

1 **Testing robustness of CPUE standardization and inclusion of environmental variables with**
2 **simulated longline catch datasets**

3
4 Francesca C. Forrestal^{a*}, Michael Schirripa^b, C. Phillip Goodyear^c, Haritz Arrizabalaga^d,
5 Elizabeth A. Babcock^e, Rui Coelho^f, Walter Ingram^g, Matthew Lauretta^b, Mauricio Ortiz^h, Rishi
6 Sharmaⁱ, John Walter^b

7
8 ^a Cooperative Institute of Marine and Atmospheric Science, 4600 Rickenbacker Cswy, Miami, FL 33149, USA ^b
9 Miami Laboratory, Southeast Fisheries Science Center, National Marine Fisheries Service, 75 Virginia Beach Drive,
10 Miami, FL 33149-1099, USA

11 ^c 1214 North Lakeshore Drive, Niceville, FL 32578, USA

12 ^d AZTI Tecnalia, Marine Research Division, Herrera Kaia Portualdea, z/g 20110, Pasaia, Gipuzkoa, Spain

13 ^e Rosenstiel School of Marine & Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami,
14 FL 33149, USA

15 ^f Instituto Português do Mar e da Atmosfera (IPMA I.P.), Avenida 5 de Outubro s/n, Olhão, 8700-305 Portugal

16 ^g NOAA Fisheries, Southeast Fisheries Science Center, Mississippi Laboratories, 3209 Frederic Street, Pascagoula,
17 MS 39567, USA

18 ^h ICCAT SECRETARIAT - Corazón de María, 8. 28002 Madrid, SPAIN

19 ⁱ NOAA Fisheries, Northwest Fisheries Science Center, 1201 Lloyd Boulevard, Suite 1100, Portland, OR
20 97232

21 **Abstract**

22 Environmental variability changes the distribution, migratory patterns, and susceptibility to
23 various fishing gears for highly migratory marine fish. These changes become especially
24 problematic when they affect the indices of abundance (such as those based on catch-per-unit-
25 effort: CPUE) used to assess the status of fish stocks. The use of simulated CPUE data sets with
26 known values of underlying population trends has been recommended by ICCAT (International
27 Commission for the Conservation of Atlantic Tunas) to test the robustness of CPUE
28 standardization methods. A longline CPUE data simulator was developed to meet this objective
29 and simulate fisheries data from a population with distinct habitat preferences. The simulation
30 was used to test several statistical hypotheses regarding best practices for index standardization
31 aimed at accurate estimation of population trends. Effort data from the US pelagic longline fleet
32 was paired with a volume-weighted habitat suitability model for blue marlin (*Makaira nigricans*)
33 to derive a simulated time series of blue marlin catch and effort from 1986-2015 with four
34 different underlying population trends. The simulated CPUE data were provided to stock
35 assessment scientists to determine if the underlying population abundance trend could accurately
36 be detected with different methods of CPUE standardization that did or did not incorporate
37 environmental data. While the analysts' approach to the data and the modeling structure differed,
38 the underlying population trends were captured, some more successfully than others. In general,
39 the inclusion of environmental and habitat variables aided the standardization process. However,
40 differences in approaches highlight the importance of how explanatory variables are categorized
41 and the criteria for including those variables. A set of lessons learned from this study was
42 developed as recommendations for best practices for CPUE standardization.

43
44
45 **Keywords:** Catch/effort, Longline, Statistical models, Simulation, Stock assessment,
46 Environmental effects

47 *Corresponding author: fforrestal@miami.edu

48
49 **1. Introduction**

50 Indices of abundance derived from fishery-dependent time series of catch per unit effort
51 (CPUE) are often an integral part of the stock assessment process. Thus, there is a need to
52 understand the processes that might lead to biases in the indices. Nominal CPUE values are often
53 not proportional to the abundance of the stock being assessed (Campbell, 2015, 2016; Maunder
54 et al., 2006; Maunder and Punt, 2004). Variations in CPUE can be the result of changes in the
55 abundance of the fish stock, shifts in movement patterns, environmental and climatic changes as
56 well as changes in fishing strategy over time (Bigelow et al., 1999). Use of CPUE to track
57 abundance is based on the assumption that catch (C) is related to the effort (E), the abundance
58 (N) and the catchability (q):

$$C = qEN$$

59 The use of the CPUE (C/E) as an index of abundance (N) thus depends on the assumption
60 that catchability is constant or that changes in catchability can be modeled and removed from the
61 index. Changes in catchability can be related to any changes to the fishing gear, species targeting
62 and fishing methods. Additionally, the spatial extent of the fish population or the fishery may
63 shift over time, influencing the fraction of the stock that is available to each fleet. Habitat
64 suitability, such as dissolved oxygen concentration and water temperatures in the pelagic
65 environment, can affect fish availability or catchability (e.g., by altering fish behavior).
66 Incorporation of environmental covariates into index standardization might address some of
67 these issues, but this is not routinely done. Best practices for incorporating environmental
68 variables in CPUE standardization have not been defined, which adds uncertainty in choosing
69 standardization methods aimed at minimizing CPUE bias.

70 A species distribution model (SDM) and longline simulator (LLSIM) were developed to test
71 methods of CPUE standardization, amongst other goals. This paper uses simulated longline catch
72 data sets with known values of underlying population trends to test the robustness of CPUE
73 standardization methods. A species distribution model for Atlantic blue marlin (*Makaira*
74 *nigricans*) was developed using pop-up satellite archival tag (PSAT) data paired with detailed
75 data describing the physical environment within the model region (Fig. 1) to predict fish
76 abundances using habitat suitability modeling (Goodyear et al., 2017; Goodyear, 2016). This
77 approach is commonly used for predicting habitat quality from habitat suitability indices based
78 on ecological niche theory (Hirzel and Lay, 2008). Applications to billfish species include the
79 identification of potential new fishing grounds (Chang et. al., 2012, 2013), and forecasts of the
80 effects of climate change (Robinson et al., 2015). This approach is paired with fishing fleet
81 dynamics, using historical effort distribution and gear configurations of the US pelagic longline
82 fishery. Fleet catchability was defined to be gear-specific, while spatial effort allocation
83 mimicked observed longline fishing locations. The simulated fleet was used to sample the blue
84 marlin populating the SDM throughout the year, producing simulated catch per unit effort data
85 based on the interactions between fishing effort and habitat suitability (i.e., fish availability) as
86 well as gear configuration (gear efficiency) (Forrestal, et al., in press). The historical effort and
87 gear configurations of the US longline fleet as adapted for use in the longline simulator are
88 extensively discussed in Forrestal et al. (In press). Four distinct population trends were
89 simulated for blue marlin (steady, increasing, decreasing, and fluctuating) to produce simulated
90 catch datasets. These datasets were provided to eight stock assessment scientists with expertise in
91 standardizing CPUE indices who used methods of their choice to standardize the indices. The
92 goals of this work are to determine how well different standardization methods currently in use
93 capture population trends and if the inclusion of environmental and habitat data aids in the
94 standardization process.

95 **2. Material and methods**

96 *2.1 Species distribution model*

97 The simulated population model is defined in two steps. The first input is the population
98 abundance in each year and month of the time series (here equal to September 1986 to December
99 2015). The second input is the relative population density per one-degree latitude and longitude
100 and water depth gradient defined by the SDM (Goodyear et al., 2017; Goodyear, 2016) based on
101 the species habitat preferences for each model time-step. The densities were normalized so that
102 the sum of the products of the relative density x volume over each latitude, longitude, and depth
103 = 1.0. The SDM provided the average distribution of the entire population by month and year
104 during hours of daylight and nighttime to account for diel vertical redistribution. The method
105 accounts for temporal changes in the location and volume of the habitat associated with seasonal
106 and longer-term changes in the environment. For example, it directly estimates the vertical
107 density distributions in areas affected by the oxygen minimum zones (Stramma et al., 2012). The
108 SDM uses published blue marlin oxygen tolerance information (Brill, 1994), coupled with
109 temperature utilization and day-night ΔT patterns from PSAT-tagged blue marlin to predict the
110 species distribution from the detailed environmental data (Goodyear et al., 2017; Goodyear,
111 2016).

112 Four population trends were used in this study, a constant population of 500,000 individuals,
113 a decreasing population with a 70% reduction over 29 years, an increasing population by 70%
114 over 29 years and a population that fluctuated around 500,000 individuals over the time period
115 (Fig. 2-4). The declining pattern is roughly equivalent to the values estimated in the most recent
116 assessment (Anon, 2012) and the increasing population is its mirror image.

117 *2.2 Environmental Data*

118 Modeling the spatial distribution of a species requires quantitative data about the physical
119 environmental variables that determine its habitat. Temperature and to a lesser extent dissolved
120 oxygen concentration influence blue marlin habitat use (Block et al., 1992). Environmental data
121 were obtained through the Community Earth System Model (CESM1), which is a global ocean-
122 sea-ice model coupled to a biogeochemistry model BEC (Biogeochemical Elemental Cycle)
123 (Danabasoglu et al., 2012; Long et al., 2013). The model covers the global ocean with a
124 latitudinal and longitudinal resolution of 1.0° and 60 vertical layers with the bottom level at
125 5,500 m. Annual data outputs from CESM were available through 2012. Mean values from the
126 final year were used to parameterize the species distribution model for 2013-2015.

127 *2.3 Longline simulation model*

128 The core element of the longline simulator is the catch on a single hook of a longline set.
129 The catch is a probabilistic event and is simulated for each hook of each set. The X-Y spatial
130 structure of the simulator is from 35°S to 55°N latitude and 95°W to 20°E longitude, exclusive of
131 major land masses. This area is broken down into 7,067 cells; each cell is 1 degree of latitude by
132 1 degree of longitude. Each longitude-latitude cell is also divided into 46 depth strata of unequal
133 size, corresponding to the environmental depth data. Conceptual details are presented in
134 Goodyear et al. (2017) and Forrestal et al. (in press), but fundamentally involve the integration of
135 population size, an essential gear coefficient (k) and a habitat coefficient (w) for each set. The
136 habitat coefficient integrates the hook-depth probabilities at depth for each hook on a simulated
137 set with the species relative density at the latitude and longitude of the set in each of the 46 depth
138 layers apportioned by the proportion of the set that fishes at that depth in hours, separated
139 between daylight and darkness.

140 2.4 Data Analysis

141 The longline simulator outputs a catch by set file with column headings typically observed in
142 pelagic longline fishery logbook data. For this exercise, the variables included with the number
143 of blue marlin caught were: total number of hooks, hook type, bait type, number of light sticks,
144 hooks between floats (HBF), month, year and latitude and longitude (Table 1). Hook type had
145 four levels: circle hooks, J hook, a combination of circle and J hooks and unknown hook type.
146 Bait type used was artificial, live, dead or unknown. The light sticks were binned values
147 corresponding to unknown light sticks reported, zero light sticks deployed, 1-500 and 501-1500
148 light sticks. Hooks between floats numbered between 2 through 6. These variables are referred to
149 as the gear variables and include those that are traditionally used for CPUE standardizations. The
150 sea surface temperature (SST) and the dissolved oxygen (DO) at the surface for the location,
151 month and year from 1986-2012 were also supplied from the outputs of the CESM and are
152 referred to as the environmental variables. While the SST and DO were available from the model
153 by depth, only the surface data were included to mimic the type of data available for CPUE
154 standardization. All simulated fishing sets were included in the final data set, including those
155 that did not catch blue marlin.

156 Four simulated catch datasets corresponding to the alternative population trends were
157 distributed to eight analysts across several ICCAT contracting or cooperating countries (i.e.,
158 CPCs). These analysts have extensive knowledge and experience developing standardized
159 indices of abundance from fisheries-dependant CPUE data. The work was carried out in a blind-
160 study approach, the analysts were not aware of the true population trends or the species being
161 simulated in the dataset. The analysts developed their own approach to the data without
162 consultation with the authors or the other analysts (Table 2). Some analysts provided more than
163 one standardized index for each population due to their personal preference. The details of each
164 analyst's approach are summarized below. Analysts 1-3 did not have access to population 4 as
165 this dataset was developed later in the study.

166 2.4.1 Analyst 1

167 Analyst 1 used a delta lognormal approach in R to standardize CPUE Factors were included
168 if they explained at least 5% of the variance. Any two-way interactions that explained at least 5%
169 of the variance were included as random effects, using the *glmer* function in the *lme4* library for
170 R (Bates et al., 2015).

171 The CPUE of blue marlin was calculated as catch per thousand hooks. The potential
172 explanatory variables were year (1986-2015), hooks between floats (either as a number, centered
173 by subtracting the mean or as a factor), area (the 9 ICCAT areas for billfish; ICCAT, 2016,
174 Online Supplementary Fig.1), season (months 1-3, 4-6, 7-9, 10-12), bait type (5 levels), hook
175 type (4 levels) and light sticks (4 levels). Sea surface temperature and DO were not available for
176 all years, so they were only used in alternate runs ending in 2012. Both variables were coded as
177 factors (SST <15,15-20,20-25,25-30, DO <4.5,4.5-5, >5) (Table 3).

178 The gear variables were not evenly distributed in time and there were many combinations of
179 variables that did not exist. Therefore, some factors were combined or eliminated before running
180 the models. Data from the South Atlantic (ICCAT billfish areas 96 and 97; Online
181 Supplementary Fig. 1) was excluded since there were very few observations, with none in recent
182 years. Hook types 2 and 5 and bait type 1 and 3 were excluded due to low numbers of
183 observations. The final dataset included 96.5% of the total observations for all populations. The
184 trend in CPUE was calculated as the probability of presence (calculated as the inverse logit of the
185 year effect in the binomial model) times the mean CPUE when present (calculated by converting

186 the year effect in the model from normal to lognormal). The Lo et al. (1992) method was used to
187 calculate the standard errors.

188 2.4.2 Analyst 2

189 Analyst 2 used a negative binomial GLMM to standardize the catch in number, with effort
190 taken to be an offset. The models were run consecutively in R using the MASS, nlme and lme4
191 packages (Pinheiro et al., 2017; Venables and Ripley, 2002). Latitude and longitude were
192 grouped into four areas (SE, NE, SW, NW) and months were grouped into quarters. This analyst
193 used four models including a full model that contained year, area, quarter, hook type, bait type
194 and light sticks. This model was repeated with the inclusion of sea surface temperature. This
195 analyst did not use dissolved oxygen as it was highly negatively correlated to sea surface
196 temperature. SST was treated at a continuous variable. The final two models contained year, area
197 and quarter with and without SST. An offset term of the natural log of total hooks was used in
198 the both the simple and full model.

199 Interaction effects were not used for any of the models. Deviance explained was used as the
200 main model selection criteria along with ANOVA and F tests (at the 0.05 level). The year
201 effects were estimated from the marginal mean in R given all other factors and variables.

202 2.4.3 Analyst 3

203 Generalized linear models were run in R using the packages lsmeans and glmmADMB
204 (Fournier et al., 2012). First, the annual CPUE observations were plotted as histograms to
205 examine distribution shape and determine candidate models for estimating index variance.
206 Goodness-of-fit tests (chi-squared for discrete distributions, and Kilmogorov-Smirnov for
207 continuous distributions) were ran to evaluate the best-fit model to the observed data. The
208 samples were assigned to spatial zones defined by the Southeast Fishery Science Center (Online
209 Supplementary Fig. 2). From there, a delta gamma model was selected that included year, month,
210 area, and all gear variables as factors. Model performance was assessed by model convergence
211 and residual error distribution. The model structure was the same for the model that contained
212 environmental data. Sea surface temperature was treated as a continuous variable, and dissolved
213 oxygen was not used as it was found to be correlated to sea surface temperature (Table 3). The
214 binomial model and the gamma model used all the factors with single term fixed effects. No
215 interaction terms were used, and no observations were discarded. Temporal trends in samples
216 sizes indicated an imbalance or temporal shift in the distribution for several factors, particularly
217 gear, hook type, bait, hooks between floats, and area fished. This diagnostic was used as a
218 principle tool to select factors for inclusion in the standardization model. The final model
219 covariates were selected primarily by examining boxplots of the mean and variance of CPUE
220 observations across model factors to examine which covariates appeared to influence CPUE and
221 varied in sample distribution over time and secondarily, Akaike's Information Criterion (AIC) of
222 nested models.

223

224 2.4.4 Analyst 4

225 This analyst was the only one to utilize a Generalized Additive Model (GAM). SAS[®] was
226 used as the statistical software (Schlotzhauer and Littell, 1997). The GAM models were used in
227 the delta lognormal framework to develop indices. The models applied to each population were
228 the same and incorporated environmental variables. Smoothing splines were applied to SST,
229 hooks, latitude, longitude, surface DO, light sticks and hooks between floats (HBF). Months,
230 years, bait type and hook type were treated as categorical variables. The success component was

231 modeled using a binomial distribution and the abundance component was modeled using a
232 Poisson distribution.

233 2.4.5 Analyst 5

234 Analyst five used a delta lognormal approach implemented using Generalized Linear Mixed
235 Models (GLMM). Analyses were conducted using the *glimmix* and *mixed* procedures from the
236 SAS® statistical computer software (Schlotzhauer and Littell,, 1997). This analyst employed an
237 extensive graphical exploration of the datasets, including a spatio-temporal analysis to define
238 geographical areas and seasonality of the fishery (Online Supplementary Fig. 3). The relationship
239 between potential factors and the nominal $\ln(\text{CPUE})$ of the positive sets were examined using
240 proportional boxplots. Bivariate plots were used to examine the relationships between the
241 $\ln(\text{CPUE})$ and the environmental variables paired with smoothing fits. The selection of the final
242 model was based on AIC, BIC, and a χ^2 test of the difference between the [-2 log likelihood]
243 statistic of a successive model formulations (Littell et al., 1996). Interaction effects were used,
244 and they were assumed to be random. The model structure was constant across all four
245 populations (Table 3) and one standardized trend was obtained for each population that
246 contained both the gear and environmental variables (Figs 2-4). Relative indices for the delta
247 model formulation were calculated as the product of the year effect least square means
248 (LSmeans) from the binomial and the lognormal model components. The LSmeans estimates use
249 a weighted factor of the proportional observed margins in the input data to account for the non-
250 balance characteristics of the data. LSMeans of lognormal positive trips were bias corrected
251 using Lo et al., (1992) algorithms.

252 2.4.6 Analyst 6

253 Analyst 6 used a Tweedie Generalized Linear Model; analyses were conducted using R and
254 the tweedie (Dunn and Smyth, 2005, 2008), lsmeans (Lenth, 2016) and mfp (Ambler and
255 Benner, 2015) packages. The Tweedie GLM approach does not split the response variables into
256 success and abundance of CPUE and then apply two separate models as is the case with the delta
257 approach used by other analysts (Table 4). The only response variable was CPUE measured as
258 number of blue marlin caught per 1000 hooks, which is a continuous variable with an added
259 mass of zeros for the cases of sets with zero catches. The categorical variables included in the
260 final model were: year, month, light, hook type, bait type and hooks between floats. The spatial
261 variables latitude and longitude were grouped into categorical areas using regression trees,
262 according to the method developed by Ichinokawa and Brodziak (2010). The environmental
263 variables sea surface temperature and dissolved oxygen were used as continuous variables
264 transformed with fractional polynomials, using the method developed by Royston and Altman
265 (1994).

266 Initially, univariate models were applied for each candidate variable. Significance for
267 inclusion were likelihood ratio tests comparing univariate models to the null model. All
268 significant variables (5% level) were then used for a multivariate model. In the multivariate
269 model, the final significance of each variable was analyzed using deviance tables, AIC and
270 pseudo R^2 . The final models were slightly different for each population as the area
271 categorizations and polynomial transformations were specific to each population dataset (Table
272 4). No interaction effects were used due to computational restraints. The year effects were
273 extracted in the same manner as analyst 3.

274 2.4.7 Analyst 7
275 This analyst used a delta lognormal GLMM approach to standardize the CPUE data. The
276 statistical software employed was R with the *glmer* function of the lme4 package (Bates et al.,
277 2015). None of the models included environmental variables due to computational constraints
278 and the lack of environmental data in the most recent years. Latitude and longitude were grouped
279 into three areas, a northern region (including the Gulf of Mexico), southern and Caribbean
280 region. Successes were modeled using a binomial distribution, and abundances using a Gaussian
281 distribution. Variables were included in the final model if they explained 5% or more of the
282 deviance. The models used to standardize populations 2, 3 and 4 were the same while the model
283 applied to population 1 contained interactions between year and some of the other explanatory
284 variables (Table 3). If interactions with year were significant, they were treated as random
285 effects. But in most cases, interactions could not be tested due to lack of computing power. The
286 year effect was extracted by taking the year coefficients in both models and then transforming
287 and corrected them according to Lo et al. 1992
288

289 2.4.8 Analyst 8
290 Analyst 8 used a delta lognormal GLM approach. The analyses were conducted using SAS
291 proc *glimmix* for the binomial component and SAS proc *mixed* for the lognormal component.
292 This analyst developed eight models, a different model for each population and models with and
293 without the environmental variables (Table 3). Latitude and longitude were grouped into the US
294 pelagic longline logbook areas (Cramer, 1983). The Goodman (1960) exact method for
295 calculating the variance of two independent random variables was used to obtain the variance.
296 Two methods commonly employed to select models were used; the method of Ortiz and Arocha
297 (2004), which uses the percent reduction in explained deviance to select factors that explain
298 greater than a certain percentage and the method of Brown (1992), which uses the percent
299 deviance reduction per degree of freedom. A 5% cut-off was used for all models, which is
300 commonly used for each method. Environmental variables were originally entered as categorical
301 and were changed to continuous (SST*SST and surface DO) due to model fitting issues. The
302 yearly index was extracted using the SAS lsmeans statement.

303 2.4.9 Analysis of standardized trends

304 Standardized trends from the eight analysts and the true population trends were
305 normalized to the mean to examine differences among the time series. The normalized, modeled
306 CPUE trends were regressed to the normalized, underlying population trends. Root mean square
307 errors (RMSEs) were estimated using residuals between the population trend and the
308 standardized CPUE to quantify the accuracy of each standardization. Further examination of
309 model fits were estimated using the median absolute relative error (Ono et al., 2015, Online
310 Supplementary Table 1). The average RMSE for all analysts within populations for models with
311 and without environmental variables were compared with a t-test or Mann-Whitney *U*. The
312 mean standardized trends with and without environmental covariates were plotted using ggplot2
313 and Hmisc packages (Wickham, 2009; Harrell, 2017).

314 **3. Results**

315 *3.1 Population 1*

316 Population 1 led to the lowest average RMSE of the four populations examined for the model
317 types that included only gear variables and those with environmental variables added (Table 5).

318 The models that contained environmental variables had lower RMSE for all the analysts that
319 examined both model types. However, there was no difference between the models that used the
320 environmental models and those that did not (two-sample t (12) = 1.49, $p=0.16$, Table 5). Two
321 general patterns emerged from examining the standardized CPUEs in comparison to the
322 population trends: (1) standardized CPUEs that fluctuated around the true population and (2) an
323 overestimation of population size in the start of the time series and an underestimation beginning
324 in 2002. The five models that underestimated the true values after 2002 did not include hook
325 type in their final model. The exception to this trend was analyst 5 who did include hook type in
326 the final model structure. This analyst was also the only one to use a GAM approach.

327 The trends obtained by analysts 1, 2, 4, 7 and 8 exhibited a drop in population size in 2002
328 that did not occur in the true population trend (Fig. 2). Analyst 1 noted that hook type was not
329 used in the final model as it did not explain more than 5% of the deviance observed. Analyst 2
330 used the environmental data in a model with only year, quarter and area (SE, NE, SW, NW) as
331 factors and a full model with all possible variables (models environment 1 and 2 respectively,
332 Fig. 2). The simpler model with environmental data had the drop observed in 2002. However,
333 adding the environmental data smoothed the trend out even though hook type was not included.
334 Both versions of the complete model (Gear 2 and Environment 2) had a very close agreement to
335 the true population trend time series.

336 Both time series obtained by analyst 3 fluctuated around the true population trend as did
337 analyst 6's time series. However, the error was lower for analyst 6. This pattern was also
338 observed in three of analyst 2's models although those standardized trends did not fluctuate
339 around the true population. The RMSE for those three models were the lowest across all models
340 and populations.

341 Analyst 5's standardized time series also fluctuated around the true population. However,
342 starting in 2012, the standardized trend greatly overestimated the true population size. This
343 analyst utilized SAS and incorporated the environmental variables into the final model. The
344 environmental data points did not extend past 2012. Analysts that used these variables truncated
345 the standardized CPUE at 2012 to account for the shorter time series. This was either discovered
346 through an initial exploration of the data or, if R was used as the statistical software, the software
347 automatically excluded records with data, in this case, environmental data. However, analyst 5
348 used SAS which runs with years that contain missing data but uses the average value of the
349 missing variable; this resulted in predictions for these years diverging from the true values. There
350 are estimated values from the model including environmental effects in the 2013 and 2014, but
351 they are highly uncertain. This occurred with all models across the four populations for analyst 5.
352 For comparison purposes to other analysts, the model residuals used in the RMSE analysis were
353 from 1986-2012.

354 3.2 Population 2

355 The population 2 dataset contained a declining population trend and all the analysts were able
356 to capture the decline. In general, the standardized CPUE overestimated the true population size
357 in the earliest years of the dataset. However, in the most recent years, the analysts either
358 accurately estimated or underestimated the true population size. As was observed in population
359 1, the models with the environmental variables had a non-significant lower average RMSE than
360 those models that did not incorporate the environmental covariates (Mann-Whitney $U=18.0$,
361 $n_1=6$, $n_2=8$, $p=0.49$, Table 5). However, whether environmental variables reduced RSME varied
362 by analyst. Models including the environmental variables had a higher RMSE for analysts 1 and
363 3, but not for analysts 2 and 8 (Table 5).

364 Analyst 1 treated hooks between floats as a factor for population 2 as the relationship
365 between HBF and CPUE was not as clear for in population 1. Analyst 8's binomial gear model
366 only contained year and area.

367 The time series obtained from analysts 1, 2, 4, 5 and 8 did not match the true population
368 trend in the earliest years (1986-1993), which corresponded to the highest CPUE values (Fig. 3).
369 In later years, the modeled trends converged on the true population trend for analysts 3, 6 and 7.
370 Analysts 1, 2, 4, and 8 underestimated the true population size in the most recent years. The time
371 series from analyst 5 followed the true population trend before the extreme values began in 2013.

372 *3.3 Population 3*

373 Population 3, which had an increasing population size, had the largest discrepancy between
374 modeled values and the true population values as measured by the RMSE (Table 5). As with
375 populations 1 and 2, the environmental models had a lower error than the gear models, but again
376 the difference was not significant (two-sample t (12) =0.87, $p=0.40$, Table 5).

377 The model produced by analysts 1, 2, 4 and 7 overestimated the population size in the earliest
378 years and underestimated in the later years (Fig. 4). The environment models for analysts 3, 6
379 and 8 all had very similar patterns, closely following the true population trends from 1986 to
380 2002 and then exhibiting a spike of overestimation in 2008 and again in 2012. The gear models
381 for analysts 1, 2, 7 and 8 underestimated the true population size starting in 2004; the inclusion
382 of environmental variables corrected the underestimation in analyst 8's model, but not for
383 analysts 1 and 2. An examination of the mean standardized trends shows an overall
384 overestimation of the earliest years population for both the gear and environmental models and
385 an underestimation of both models beginning in 2004. However, the environmental models track
386 closer to the true population trend (Fig. 6).

387 *3.4 Population 4*

388 There are results from five analysts for population 4 as opposed to eight for the other
389 populations. This is the result of this dataset being distributed to the analysts later in the study.
390 This dataset represents a fluctuating population with two occurrences of population decline and
391 resurgence. For this population, the gear models had a lower mean RMSE than the environment
392 models, although this was not significant (two-sample t (4) =-0.135, $p=0.89$, Table 5).

393 Analyst 6 and 7 were able to track the true population's fluctuations quite well (Fig. 5) while
394 analysts 4 and 8 overestimated population size in the first year and then underestimated
395 population size starting in 2005. Analyst 5 was able to capture the initial population trend quite
396 well before a similar underestimation of the population starting in 2005. The two mean model
397 trends were quite similar from 1986 until 1995, with the environmental model tracking closer to
398 the true population trend from 1995 to 2005. After 2005, both models underestimated the true
399 population with very similar observed patterns (Fig. 5).

400 **4. Discussion**

401 The aim of this study was to examine some of the methods employed by ICCAT CPC
402 scientists who are routinely tasked with creating indices of abundance for the fisheries they
403 participate in and to determine if these methods were able to reliably capture the underlying
404 population trend in the provided datasets. The results of this work highlight the wide range of
405 standardization approaches taken as a result of each ICCAT member country conducting their
406 own analysis. The strengths of the ICCAT approach is that it is an inclusive process that subjects
407 the analysis to review from other national scientists and allows those that are most

408 knowledgeable about the fisheries to conduct the analyses. However, the weakness of this
409 approach is the use of various methodologies can lead to conflicting CPUE trends that may or
410 may not be reflective of the true biomass. Other tuna regional fishery management organization
411 (tRFMO; e.g., WCPFC - Western and Central Pacific Fisheries Commission) differ from the
412 approach of having each CPC scientist produce standardized CPUE trends and instead utilize the
413 tRFMO Secretariat or the services of other advice bodies, such as SPC (Pacific Community).
414 This leads to consistent standardization techniques applied over different datasets and over time.
415 However, weaknesses of this approach are that it tends to exclude member countries' scientists,
416 and the analysts conducting the analysis may not have the same level of understanding of the
417 fisheries as member country scientists. An effective compromise between these differing
418 approaches may involve having the national scientists conduct their own analyses, but with
419 generally consistent and agreed upon methods of standardization.

420 While the analysts' approach to the data and the modeling structure differed, most models
421 were able to capture the underlying population trends well. However, differences in performance
422 highlight the importance of how spatial dimensions are defined, how categorical variables are
423 grouped, how continuous variables are modeled and, importantly, the criteria for model
424 selection. The analysts used different area combinations for the spatial structure of their models,
425 some grouping latitude and longitude according to the ICCAT areas for billfish, and others using
426 the raw 1x1° latitude and longitude values. Analyst 6 utilized a regression tree approach, which
427 led to different area groupings for each population. Analyst 2 used the spatial domain of the
428 observations to define four areas of equal quadrants based on the magnitude of effort. The
429 variables included in the final model also differed between analysts. Hook type was excluded
430 from the models developed by several of the analysts. Nominal catch rates for population 1 were
431 higher, prior to the switch from J-hooks to circle hooks in 2004 and then were systematically
432 lower than the true population CPUE. Models that failed to include hook type often failed to re-
433 create the true population trend. Analyst 8 conducted model selection independently for each
434 population, noting that models did not converge when hook type was included.

435 The addition of environmental variables improved the accuracy of estimates of the
436 population size across all populations with a few exceptions, such as when SAS filled in missing
437 data with mean environmental values for analyst 5. The inclusion of these variables in the cases
438 of analyst 1 for population 2 and all the populations for analyst 3 resulted in a higher RMSE
439 values and these models did not follow the true population values as well as the models that did
440 not contain the environmental variables. Environmental variables are thought to be good
441 predictors of density of a species in the vicinity of the set and/or hook. Environmental variables
442 that determine suitability of adjacent habitat should improve estimation of CPUE by accounting
443 for differential availability of a species in the vicinity of the set and/or hook. However, given the
444 linear nature of GLM models, suitable transformation of the data (continuous explanatory
445 variables) may be necessary, such as polynomials (e.g., $SST \times SST^2$) to mimic species' habitat
446 preference curves. Also, the values of environmental variables at the surface may not be highly
447 correlated with the values at depth that influence species' distributions. Future studies should
448 take advantage of the CESM data outputs at the actual depths where blue marlin and the hooks
449 are located.

450 While the use of environmental variables increased accuracy, their inclusion also increased
451 the annual CVs compared to the models without the environmental variables (e.g. see CVs for
452 analyst one, Online Supplementary Table 2), likely due to the added requirement of estimating a
453 relatively imprecise relationship between catch rates and SST or DO. In theory, a strong

454 relationship between a species density and environmentally-mediated habitat suitability may
455 exist and is a fundamental part of the species distribution model (Goodyear et al., 2017).
456 However, within the statistical models estimated in this exercise, this relationship is estimated
457 from noisy CPUE data which may lead to relatively imprecise parameter estimates in the models
458 and higher CVs as compared to not including SST or DO. Additionally, if there is insufficient
459 contrast in the data to estimate the coefficients related to the environmental predictor variables,
460 the estimates may be very imprecise, and possibly biased. This could be the case with fishery-
461 dependent data where fishers may only fish in good temperature windows so the necessary
462 contrast to estimate a CPUE-SST relationship is missing. Further improvements in the concept of
463 habitat modeling such as occupancy modeling or use of ancillary information from tagging or
464 tracking in the form of Bayesian priors may provide improvements in both the accuracy and
465 precision of CPUE-based abundance indices when including environmental data.

466 The inclusion of the environmental variables caused a problem for the SAS-based analyses.
467 Incomplete SST and DO values for the last two years caused the models of analyst 5 to diverge
468 substantially from the true values. Most analysts did not, or their software packages could not,
469 estimate the year effects for the years with the missing environmental variables. The SAS models
470 converged, but estimates for the last two years were incorrect. This situation highlights the
471 problem that missing data creates for CPUE standardization. Environmental data such as SST,
472 DO, etc. are likely to be missing, due to either not being recorded, or, if assigned based on
473 satellite oceanography, missing due to cloud cover. Hence missing data are commonplace and
474 the model results can depend upon how the missing data are treated. It is therefore critical to
475 examine *a priori* whether missing data exists and to decide how it is going to be treated rather
476 than allowing software to use default settings.

477 The poor performance of some models implies that standard model selection criteria such as
478 those based on either a 1 or 5% reduction in deviance per degree of freedom can often fail to
479 select key factors, in this case, hooks between floats or hook type, that affected catchability.
480 Hook type had a substantial impact on CPUE in the true populations. Hook type in the fishery
481 changed as a result of regulations from J-hooks to circle hooks in 2004. This shift in hook type
482 resulted in a substantial decrease in the nominal CPUE relative to the true populations and was
483 manifest in all of the four populations. Unfortunately, the knife-edge change in hook type meant
484 that the years pre- and post-2004 and hook type did not overlap, causing hook type not to be
485 selected using deviance explained. This result illustrates model selection methods based only on
486 reduction in deviance may be prone to error regarding factor exclusion and that analysts should
487 err on the side of keeping factors in the models. This is particularly the case if *a priori*
488 exploratory analyses or knowledge of the fishery indicate that the variable could affect CPUE,
489 which is surely the case with hook type or hooks between floats. Ortiz and Arocha (2004) found
490 that variables that explained more than 5% of total deviance were generally significant according
491 to likelihood ratio tests, which supports the use of 5% deviance explained in model selection.
492 However, this selection method supports models with fewer variables than the AIC and BIC,
493 which frequently include variables that are not significant in the best models. It should be noted
494 that model selection criteria such as AIC and BIC supported including hook type. These methods
495 of model selection have a better theoretical basis than *ad hoc* methods such as deviance
496 explained, so more frequent use of them is warranted (Gelman et al., 2014). Our results indicate
497 that these more complex models were better at predicting the overall trend, supporting the use of
498 information criteria rather than deviance explained in CPUE standardization. While including
499 many variables in a model may result in decreased model performance such as failed

500 convergence, requiring selection of a subset of variables, most fishery-dependent CPUE
501 standardization data sets have very high sample sizes relative to the number of model factors so
502 over-parameterization is rarely a concern.

503 Residual patterns emerging from the model fits to population 2 (the decreasing population)
504 were a possible indication of high collinearity between the year effect and at least one other
505 estimated parameter. Direct knowledge of the fishery and proper *a priori* examination of the raw
506 data was critical in realizing the true population trend was correlated with hooks between floats
507 in *post hoc* analysis. As the true population declined, the average depth of hooks increased.
508 Strong collinearity between the year effect and other parameters can lead to confounding in
509 parameter estimates and thus an inability of the model to distinguish between the correlated
510 trends and thus produce an accurate estimate of the true population trend. However, this
511 association could not have been detected without knowledge of the true population trend. Thus,
512 collinearity between factors and the year effect needs to be inferred rather than detected by a
513 means dependent on knowledge of the true population trend.

514 Three analysts modeled the population with several year×factor interaction terms, which
515 cause problems for interpretation of strict year effects (Maunder and Punt, 2004). Certain non-
516 year interactions, such as month×area or area×season could be manifestations of the migratory
517 behavior of blue marlin. The month factor signifies something different in a northern region than
518 in a southern region, which is straightforward to explain. In contrast, interactions with year are
519 harder to explain, and represent a potential confounding of the abundance signal with another
520 model factor, such as gear changes or environment.

521 A common approach when year×factor interactions are significant is to model them as
522 random effects as was done by several analysts. Unfortunately, modeling year×factor
523 interactions as random effects can lead to several problems. First, random year×factor
524 interactions can affect the parameter estimates for other variables. Second, it is important to plot
525 year×factor parameter estimates and their standard errors to determine if they are actually
526 random and not showing trends with respect to either year or the other variable in the interaction.
527 Given the potential for serial depletion (Walters, 2003) or range shifts in populations due to
528 climatic factors and the high probability of models finding spurious year×factor interactions,
529 plots of the interaction terms provide critical information about patterns in these interactions.
530 Truly random interactions would look random or would fail to reject a test of randomness.
531 Significant interactions could exist as a single outlier year, which might not merit modeling or
532 substantially trended interactions with year which require additional considerations as to why the
533 population signal differs with different values of another factor. While several analysts used
534 interaction terms, the interactions did not consistently improve the accuracy of the estimated
535 trends. Future studies employing a factorial design to specifically compare different model types
536 will further explore the use of interaction terms.

537 Several of the results point to problems in current CPUE standardization approaches. The
538 different performance of standardization methods, and the different performance with different
539 methods for defining geographical areas raise some concerns about the ability of models to
540 estimate population trends. Using an adaptive area partitioning method, Analyst 6 estimated
541 different spatial partitioning for each population, even though each population had the same
542 model factors operating and the same spatial structure. This indicates a possible dependence
543 between the population trend and the estimation of the model parameters other than the year
544 effect which is intended to capture the trend. It may be possible to diagnose adverse correlation
545 between year and other factors by examining variance inflation factors (VIFs) or by examining

546 the covariance between 'year' and other model coefficients. High VIF or high covariance with
547 year indicate that the model cannot separate the abundance trend from a trend in other model
548 factors.

549 **5. Conclusions**

550 This study with simulated longline datasets sought to determine if standardization methods
551 used by the ICCAT CPCs scientists can routinely capture underlying population trends from
552 fishery-dependant CPUE data and to derive a set of 'best practices'. Overall, despite the diversity
553 of distributional assumptions, model selection methods, software and treatments of variables,
554 most models were able to capture the underlying population trends. The inclusive stock
555 assessment practice utilized by ICCAT allows the scientists most familiar with the specific,
556 regional fleet to develop standardized CPUE time series that are then used as proxies for relative
557 abundance trends in the stock assessment models. The downside to this practice is the wide
558 variation in methodology, which may contribute to conflicting trends for the same species, and
559 may be an artefact of standardization methodology rather than a true difference in signal between
560 datasets. Thus, it is important that standardization methods be reviewed carefully before indices
561 are used in assessment, and that multiple methods be applied to the same datasets to identify
562 whether estimated trends differ with standardization methodology.

563 This exercise highlights that there are several problems with some of the *status quo*
564 approaches that warrant further exploration: unknown correlations between model factors and
565 the year effect that can confound estimation of the population signal, the usefulness of standard
566 model selection criterion to choose the correct models, and the dangers posed by missing data
567 depending upon how a modeling platform deals with it.

568 As a result of this work, we have developed a set of lessons learned:

- 569 1) Priority of variable inclusion or exclusion should be based on a first principles knowledge
570 of the fishery and the historical management measures that have taken place. If known
571 changes in the fishery have occurred (e.g., changes in legal retained size, geographic
572 distribution of fish and/fishery, changes in gear type) then these variables should be given
573 the highest consideration for inclusion, whether or not model diagnostics support their
574 inclusion. Alternatively, in cases where such variables cannot be accommodated in the
575 statistical models due to technical issues, the CPUE series may have to be split and
576 modeled as several independent time series to reflect those unaccounted changes in
577 catchability.
- 578 2) *A priori* evaluation of model balance across factor combinations over time and plots of
579 CPUE time series by model factors are absolutely critical to determining which model
580 factors are important or missing. This procedure would have captured the knife-edge
581 switch in hook types in 2004 and the missing environmental data.
- 582 3) Evaluation of multiple-collinearity of model variables with the year factor is essential.
583 Strong collinearity with the year effect results in a GLM not being able to distinguish
584 between inter-annual changes in abundance and those in the correlated variable.
- 585 4) Embrace divergence of the nominal CPUE from the standardized model estimate. Often,
586 the observation is made that the standardized trend diverges from the nominal as a
587 shortcoming against the model selected. The lack of divergence between nominal and
588 standardized trends is often used as a *post hoc* diagnostic of model performance. In the
589 examples within this study, the only way to have obtained the correct estimate of the true
590 population was to depart substantially from the nominal trend.

591 **Acknowledgements**

592 C. P. Goodyear's contribution to this research was supported by The Billfish Foundation. F. C.
593 Forrestal's and E. Babcock's contribution was supported by the NOAA Southeast Fisheries
594 Science Center via the University of Miami Cooperative Institute for Marine and Atmospheric
595 Science. R. Coelho research is supported by an *Investigador-FCT* contract (Ref: IF/00253/2014)
596 from FCT, the Portuguese Foundation for Science and Technology. The authors wish to thank
597 Sang-ki Lee and Yanyun Liu of NOAA Atlantic Oceanographic and Meteorological Laboratory
598 for gathering and compiling the oceanographic data. We also wish to thank Guillermo Diaz and
599 Allison Shideler for gathering and compiling the US longline effort data. Declarations of interest:
600 none.

601 **References**

602 Ambler, G., Benner, A., 2015. mfp: Multivariable Fractional Polynomials. R package version
603 1.5.2. Available at: <https://CRAN.R-project.org/package=mfp>

604 Anon., 2012. Report of the 2011 Blue Marlin stock assessment and white marlin data preparatory
605 meeting. Col. Vol. Sci. Pap. ICCAT, ICCAT 68(4), 1273-1386. www.iccat.int.

606 Bates, D., Machler, M. Boker, B., Walker, S., 2015. Fitting linear mixed-effects models using
607 lme4. J. Stat. Soft. 67, 1-48.

608 Bigelow, K.A., Boggs, C.H., He, X., 1999. Environmental effects on swordfish and blue shark
609 catch rates in the US North Pacific longline fishery. Fish. Oceanogr. 8, 178–198.

610 Block, B. A., Booth, D. T., Carey, F. G., 1992. Depth and temperature of the blue marlin,
611 *Makaira nigricans*, observed by acoustic telemetry. Mar. Biol. 114, 175-183.

612 Brill, R.W., 1994. A review of temperature and oxygen tolerance studies of tunas pertinent to
613 fisheries oceanography, movement models and stock assessments. Fish. Oceanogr. 3, 204–
614 216.

615 Brown, D., 1992. A Graphical Analysis of Deviance. J Roy. Stat. Soc. Ser. C Appl. Stat. 41(1),
616 55-62.

617 Campbell, R.A., 2015. Constructing stock abundance indices from catch and effort data: Some
618 nuts and bolts. Fish. Res. 161, 109-130.

619 Campbell, R.A., 2016. A new spatial framework incorporating uncertain stock and fleet
620 dynamics for estimating fish abundance. Fish Fish. 17, 56-77.

621 Chang, Y. J., Sun, C. L., Chen, Y., Yeh, S. Z., DiNardo, G., 2012. Habitat suitability analysis
622 and identification of potential fishing grounds for swordfish, *Xiphias gladius*, in the South
623 Atlantic Ocean. International J. Remote Sens. 33, 7523-7541.

624 Chang, Y. J., Sun, C. L., Chen, Y., Yeh, S. Z., DiNardo, G., Su, N.-J., 2013. Modelling the
625 impacts of environmental variation on the habitat suitability of swordfish, *Xiphias gladius*, in
626 the equatorial Atlantic Ocean. ICES J. Mar. Sci. 70, 1000-1012.

627 Danabasoglu, G., Bates, S.C., Briegleb, B.P., Jayne, S.R., Jochum, M., Large, W.G., Peacock, S.,
628 Yeager, S.G., 2012. The CCSM4 ocean component. J. Clim. 25, 1361–1389.

629 Dunn, P.K., Smyth, G.K., 2005. Series evaluation of Tweedie exponential dispersion models.
630 Stat. Comp. 15(4): 267-280.

631 Dunn, P. K., Smyth, G. K., 2008. Evaluation of Tweedie exponential dispersion models using
632 Fourier inversion. Stat. Comput. 18(1), 73-86.

633 Cramer, J., 1993. Large Pelagic Logbook Newsletter. NOAA technical memorandum NMFS-
634 SEFSC 322. <https://repository.library.noaa.gov/view/noaa/8716>,

635 Fournier, D.A., Skaug, H.J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M., Nielsen, A.,
636 Sibert, J., 2012. AD Model Builder: using automatic differentiation for statistical inference of
637 highly parameterized complex nonlinear models. *Optim. Methods Softw.*, 27, 233-249.

638 Forrestal, F.C., Goodyear, C.P., and Schirripa, M.J., (in press). Applications of the longline
639 simulator (LLSIM) using US pelagic longline logbook data and Atlantic blue marlin. *Fish.*
640 *Res.*

641 Gelman, A., Hwang, J., Vehtari, A., 2014. Understanding predictive information criteria for
642 Bayesian models. *Stat. Comput.* 24, 997-1016.

643 Goodman, L. A., 1960. On the exact variance of products. *J. Am. Stat. Assoc.* 55(292), 708- 713.

644 Goodyear, C.P., 2016. Modeling the time-varying density distribution of highly migratory
645 species: Atlantic blue marlin as an example. *Fish. Res.* 183, 469-481.

646 Goodyear, C.P., Schirripa, M., Forrestal, F., 2017. Longline data simulation: a paradigm for
647 improving CPUE standardization. *Col. Vol. Sci. Pap. ICCAT* 74(2), 379-390. www.iccat.int.

648 Harrell Jr, F., E., 2017. Hmisc: Harrell Miscellaneous. R package version 4.0-3.
649 <https://CRAN.R-project.org/package=Hmisc>

650 Hirzel, A. H., Lay, G. L., 2008. Habitat suitability modelling and niche theory. *J. Appl. Ecol.* 45,
651 1372-138.

652 ICCAT. 2016. ICCAT Manual. International Commission for the Conservation of Atlantic Tuna.
653 In:ICCAT Publications [on-line]. <http://www.iccat.int/en/ICCATManual.asp>.

654 Ichinokawa, M., Brodziak, J., 2010. Using adaptive area stratification to standardize catch rates
655 with application to North Pacific swordfish (*Xiphias gladius*). *Fish. Res.* 106, 249-260.

656 Lenth, R.V., 2016. Least-Squares Means: The R Package *lsmeans*. *J. Stat. Softw.*, 69(1), 1-33.

657 Littell, R. C., Milliken, G., Stroup, W.W., 1996. *SAS system for mixed models*, SAS Institute,
658 Inc., Cary, NC.

659 Lo, N.C.H., Jacobson, L.D., Squire, J. L., 1992. Indexes of relative abundance from fish spotter
660 data based on delta-lognormal models. *Can. J. Fish. Aquat. Sci.* 49, 2515-2526.

661 Long, M.C., Lindsay, K., Peacock, S., Moore, J.K., Doney, S.C., 2013. Twentieth-century
662 oceanic carbon uptake and storage in CESM1 (BGC). *J. Clim.* 26, 6775-6800.

663 Maunder M.N., Punt A.E., 2004. Standardizing catch and effort data: a review of recent
664 approaches. *Fish. Res.* 70, 141-159.

665 Maunder M.N., Sibert J.R., Fonteneau A., Hampton J., Kleiber P., Harley S.J., 2006. Interpreting
666 catch per unit effort data to assess the status of individual stocks and communities. *ICES J.*
667 *Mar. Sci.* 63, 1373-1385.

668 Ono, K., Punt, A.E., Hilborn, R., 2015. Think outside the grids: An objective approach to define
669 spatial strata for catch and effort analysis. *Fish. Res.* 170, 89-101.

670 Ortiz, M., Arocha, F., 2004. Alternative error distribution models for standardization of catch
671 rates of non-target species from a pelagic longline fishery: billfish species in the Venezuelan
672 tuna longline fishery. *Fish. Res.* 70, 275-297.

673 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2017. *nlme: Linear and Nonlinear*
674 *Mixed Effects Models*. R package version 3.1-131. <https://CRAN.R-project.org/package=nlme>.

675 Robinson, L. M., Hobday, A. J., Possingham, H. P., Richardson, A. J., 2015. Trailing edges
676 projected to move faster than leading edges for large pelagic fish habitats under climate
677 change. *Deep Sea Res. Part 2 Top. Stud. Oceanogr.* 113, 225-234.

679 Royston, P., Altman, D.G., 1994. Regression using fractional polynomials of continuous
680 covariates: parsimonious parametric modelling. *J. R. Stat. Soc. Ser. C Appl. Stat.* 43(3), 429–
681 467.

682 Schlotzhauer, S., Littell, R., 1997. *SAS System for Elementary Statistical Analysis*, Second
683 Edition. SAS Institute, Inc. Cary, NC.

684 Stramma, L., Prince, E.D., Schmidtko, S., Luo, J., Hoolihan, J.P., Vesbeck, M., Wallace,
685 D.W.R., Brandt, P., Kortzinger A., 2012. Expansion of oxygen minimum zones may
686 reduce available habitat for tropical pelagic fishes. *Nat. Clim. Change*, 2(1), 33-37.

687 Venables, V. N., Ripley, B. D., 2002. *Modern Applied Statistics with S*. 4th Edition. Springer.

688 Walters, C., 2003. Folly and fantasy in the analysis of spatial catch rate data. *Can. J. Fish. Aquat.
689 Sci.* 60(12), 1433-1436.

690 Wickham, H., 2009. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

691

692

693

694 **Figure captions**

695

696 **Figure 1.** Locations of simulated fishing sets for all years (1986-2015).

697 **Figure 2.** Standardized trends for population 1 for all analysts. Environment lines signify that
698 one or two environmental terms were included in the final model. Gear models contain only
699 variables associated with gear type and that factors or variables that are traditionally contained
700 in CPUE standardization models. Population is the true population trend.

701 **Figure 3.** As for Figure 2, except for population 2.

702 **Figure 4.** As for Figure 2, except for population 3.

703 **Figure 5.** As for Figure 2, except for population 4. Note results are only shown for five of the
704 analysts.

705 **Figure 6.** Mean standardized trends for all analysts. Shading surrounding lines is the
706 standardized error around the mean.

707

708 **Tables**

709

710 Table 1. Available variables to the analysts, if they were categorical or continuous and the levels
711 or range included. Latitude and longitude in one ° cells, HBF=hooks between floats, SST (°C) =
712 sea surface temperature, DO (mg/L) = surface dissolved oxygen.

Variable	Type	Range
Year	Categorical	1986-2015
Month	Categorical	1-12
Lat.	Continuous	-30°S-53°N
Long.	Continuous	-95°W-15°E
HBF	Categorical	2-6
Hook	Categorical	1-4
Bait	Categorical	1-4
Lights	Categorical	0-3
SST	Continuous	2-31
DO	Continuous	4-8

713

714 Table 2. Model format for each analyst. The method used to select the variables within the final
715 model structure are listed under “Criteria” (AIC=Akaike information criterion; BIC=Bayesian
716 information criterion; LRT=Likelihood ratio test). The column “Environment” denotes if
717 environmental variables were included in the final model, if “Both”, then the analyst conducted
718 two standardizations, one with the environmental variable and one without.

Analyst	Model	Program	Criteria	Environment
One	Delta Lognormal GLMM	R	5% deviance explained	Both
Two	Negative Binomial GLM	R	5% deviance explained	Both
Three	Delta Gamma GLM	R	AIC	Both
Four	Delta Lognormal GAM	SAS	None	Yes
Five	Delta Lognormal GLMM	SAS	AIC, BIC, χ^2	Yes
Six	Tweedie GLM	R	LRT, AIC, pseudo R ²	Yes
Seven	Delta Lognormal GLM	R	5% deviance explained	No
Eight	Delta Lognormal GLM	SAS	5% deviance explained/df	Yes

719

Table 3. Final model selection for analysts using the delta modeling approach. If analysts used the same final model for each population, only one model is listed for that analyst. Fixed effects are shown in plain text and random effects in bold. HBF is hooks between floats, DO is dissolved oxygen, and SST is sea surface temperature. See text for details on how each analyst defined each variable.

Analyst	Populations	Presence	Abundance
One	All	year+HBF+area+season+ year×area+area×season	year+HBF+area
One	All	year+HBF+area+season+SST	year+HBF+area
Three	All	year+HBF+area+month+hook+bait+light	year+HBF+area+month+hook+bait+light
Three	All	year+HBF+area+month+hook+bait+light+SST	year+HBF+area+month+hook+bait+light+SST
Four	All	SST+hooks+lat+lon+DO+light+HBF+month+year+bait+hook	SST+hooks+lat+lon+DO+light+HBF+month+year+bait+hook
Five	All	year+area+season+HBF+hook+light+bait+STT+DO+ year×area+ year×season+year×HBF+year×bait+year×light+season×hook	year+area+season+HBF+hook+light+bait+SST+DO+ year×area+year×season+year×HBF+year×bait
Seven	1	year+area+HBF+ year×month+year×area	year+month+area+ year×month
Seven	2-4	year+area+hook+HBF	year+month+area
Eight	1	year+month+bait+HBF+area	year+light+hook+HBF+area
Eight	1	year+month+bait+HBF+area+DO+SST ²	year+light+hook+HBF+area
Eight	2	year+area	year+light+hook+HBF+area
Eight	2	year+month+bait+HBF+area+DO	year+month+area
Eight	3	year+month+area	year+light+hook+HBF+area
Eight	3	year+month+light+hook+bait+area+DO+SST ²	year+month+light+hook+bait+HBF+area+DO+SST ²
Eight	4	year+month+HBF+area+bait	year+light+hook+HBF+area
Eight	4	year+mont+light+hook+bait+HBF+area+DO+SST ²	year+month+light+hook+bait+HBF+area+DO+SST ²

Table 4. Final model selection for analysts using negative binomial (Two) and Tweedie approaches (Six). All variables were fixed effects. See text for how each analyst defined each variable.

Analyst	Population	Final Model
Two (1)	All	year+quarter+area+offset(ln(hooks))
Two (1)	All	year+season+area+SST+offset(ln(hooks))
Two (2)	All	year+season+area+gear+light+HBF+hook+bait+offset(ln(hooks))
Two (2)	All	year+season+area+gear+light+HBF+hook+bait+SST+offset(ln(hooks))
Six	1	year+month+light+hook+bait+HBF+area+SST ³ +SST ³ *log(SST)+log(DO)+DO ^{0.5}
Six	2	year+month+light+hook+bait+HBF+area+SST ³ +SST ³ *log(SST)+DO ³ +DO ³ *log(DO)
Six	3	year+month+light+hook+bait+HBF+area+SST ³ +SST ³ *log(SST)+DO ³ +DO ³ *log(DO)
Six	4	year+month+light+hook+bait+HBF+area+SST ³ +SST ³ *log(SST)+DO ⁻² +DO ⁻² *log(DO)

Table 5. Root mean square errors for model fits to the true population trends.

	Population 1		Population 2		Population 3		Population 4	
	Gear	Enviro.	Gear	Enviro.	Gear	Enviro.	Gear	Enviro.
Analyst 1	0.288	0.252	0.193	0.271	0.327	0.274		
Analyst 2 (1)	0.157	0.016	0.339	0.304	0.422	0.417		
Analyst 2 (2)	0.016	0.016	0.349	0.304	0.420	0.417		
Analyst 3	0.083	0.101	0.101	0.129	0.105	0.146		
Analyst 4		0.238		0.169		0.272		0.229
Analyst 5		0.284		0.204		0.499		0.323
Analyst 6		0.086		0.104		0.122		0.102
Analyst 7	0.235		0.110		0.333		0.195	
Analyst 8	0.277	0.255	0.345	0.132	0.281	0.121	0.266	0.461
Mean	0.176	0.156	0.240	0.202	0.315	0.284	0.231	0.279
SE	0.045	0.040	0.049	0.029	0.048	0.052	0.036	0.076

Set Locations

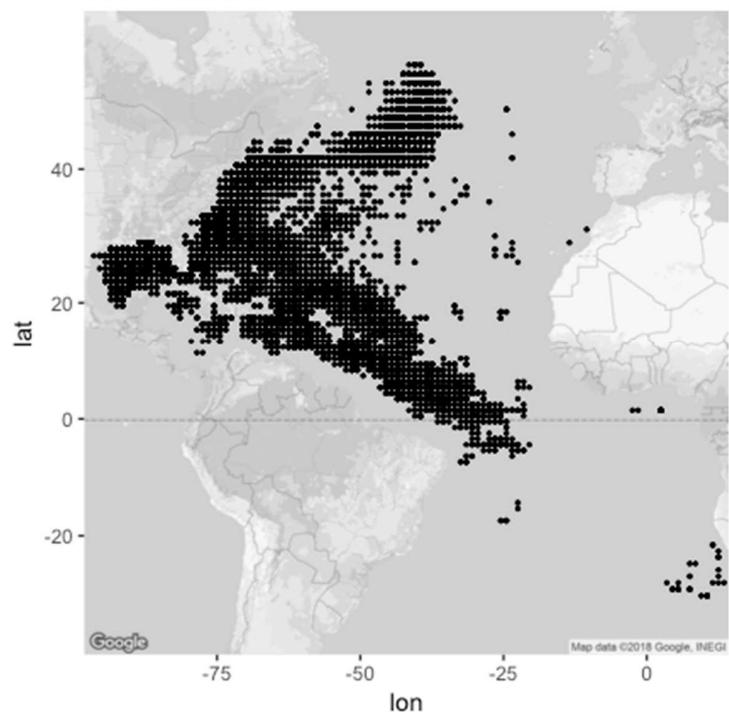


Figure 1.

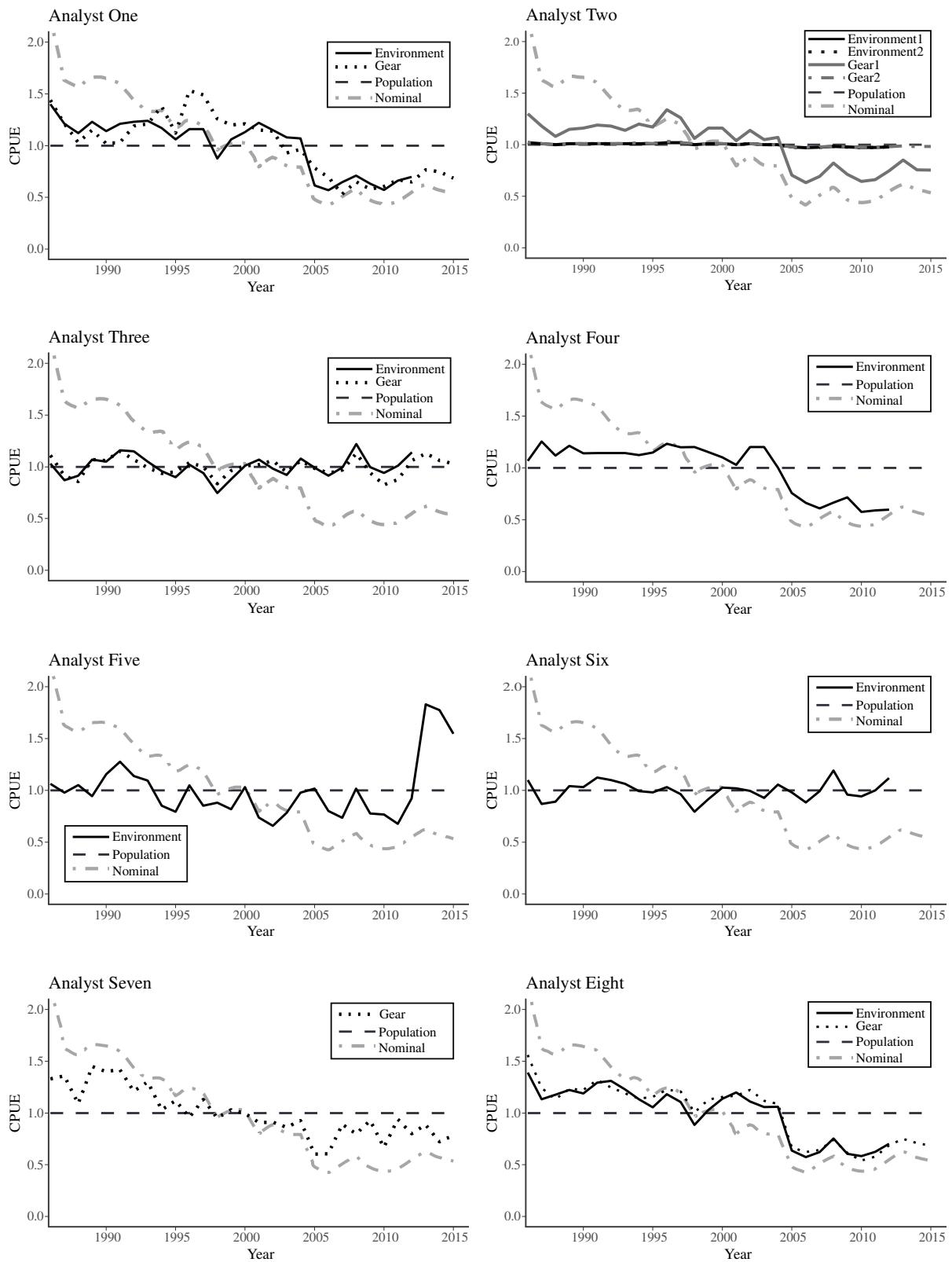


Figure 2.

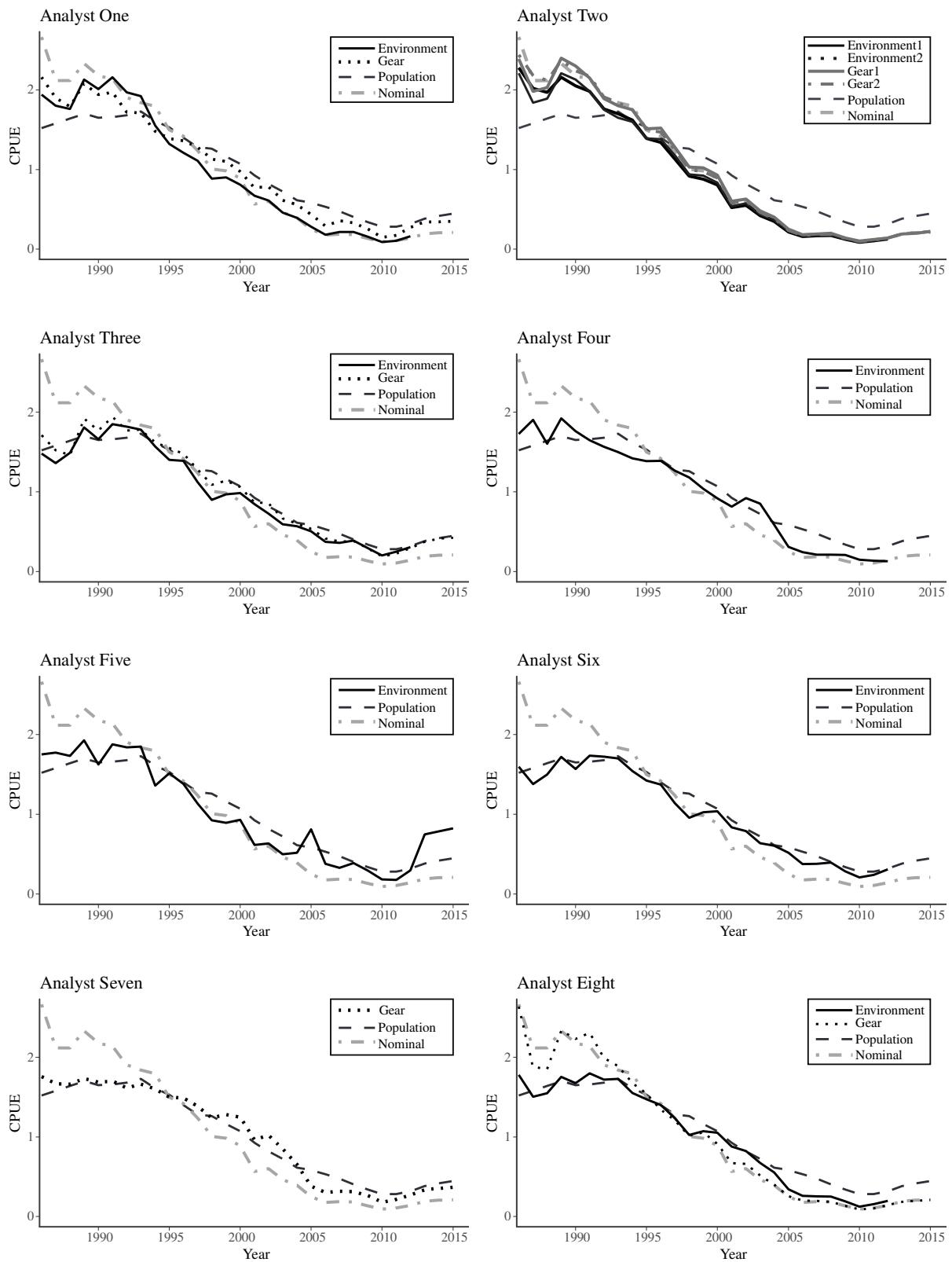


Figure 3.

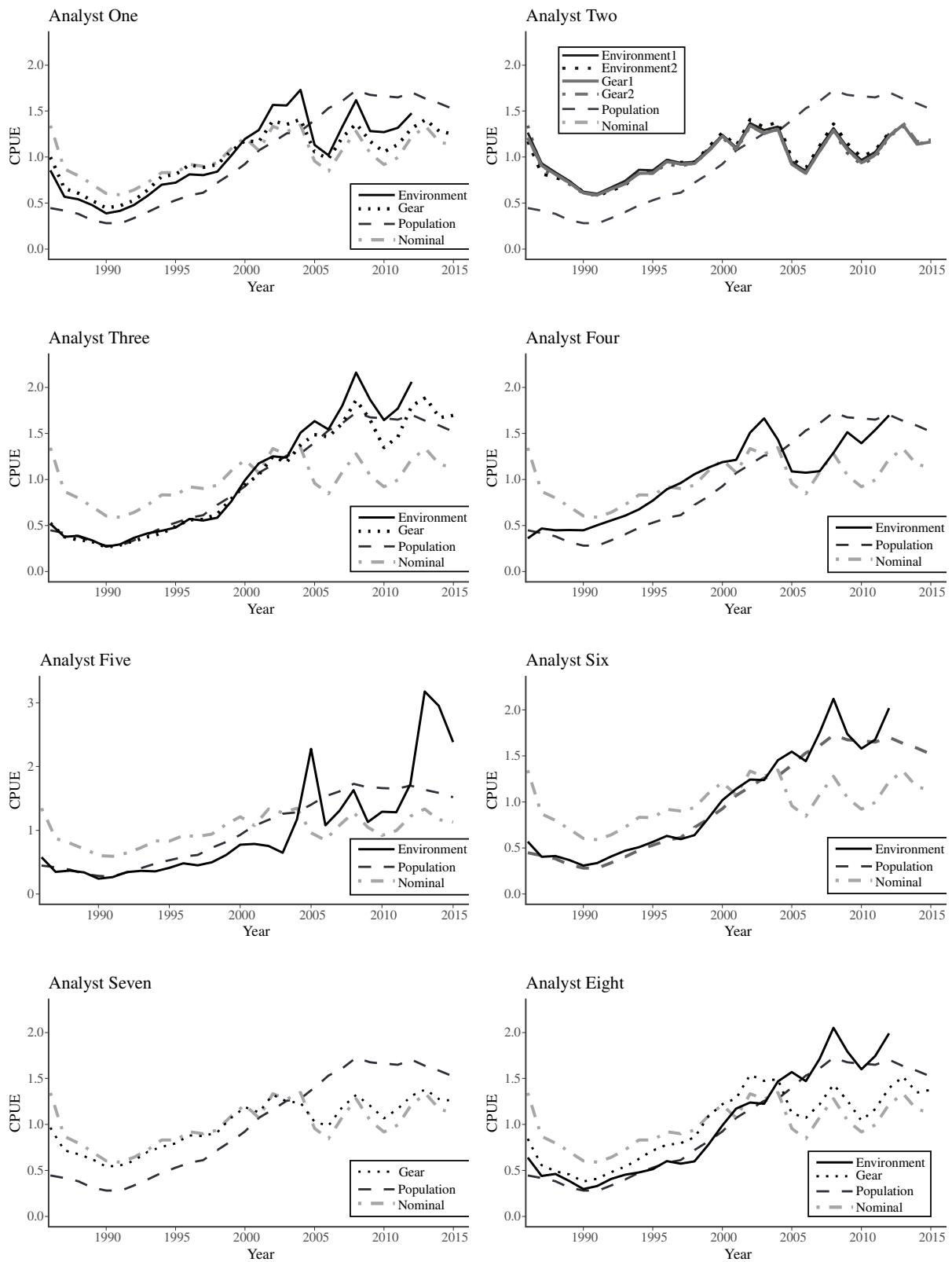


Figure 4.

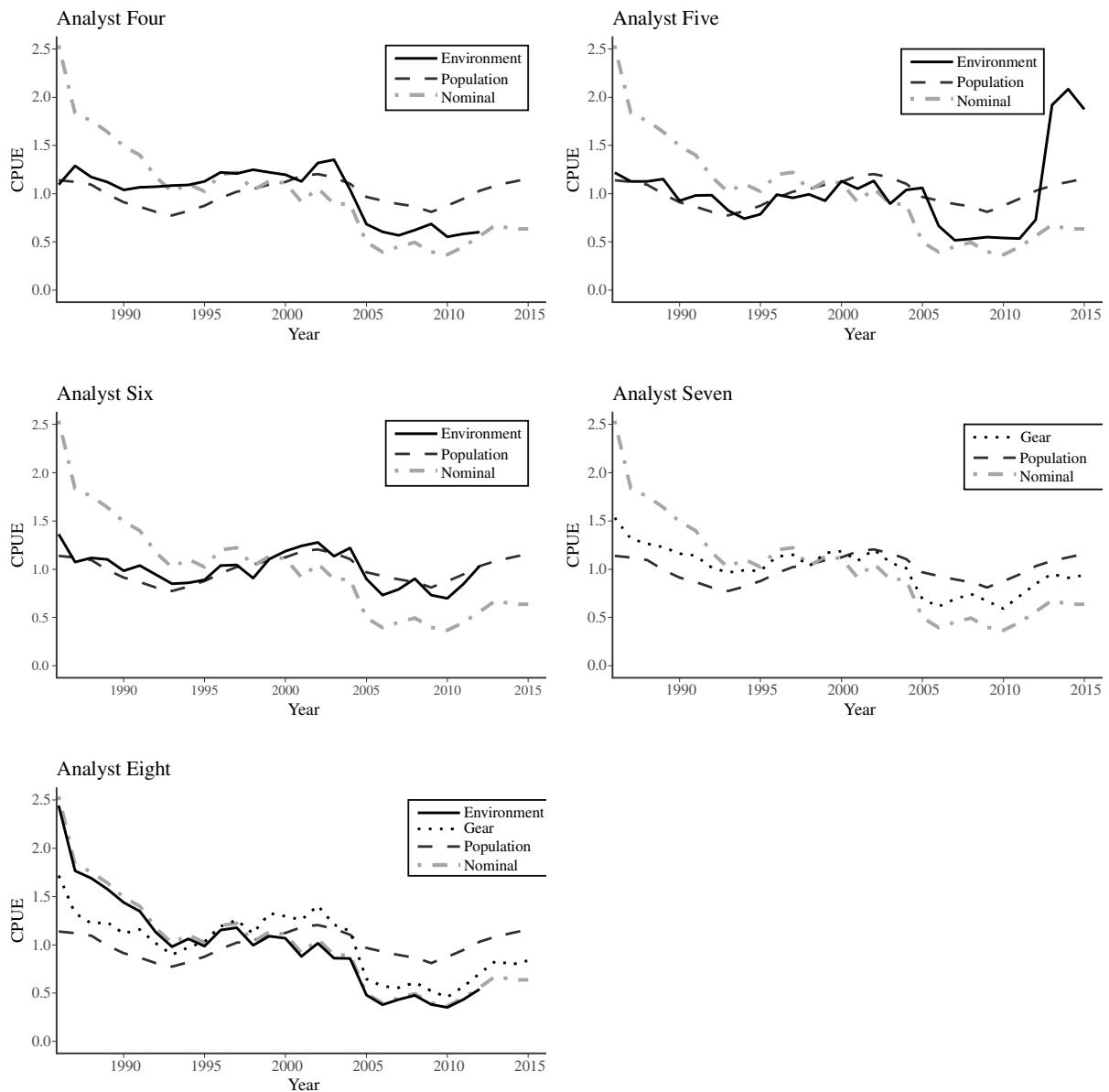


Figure 5.

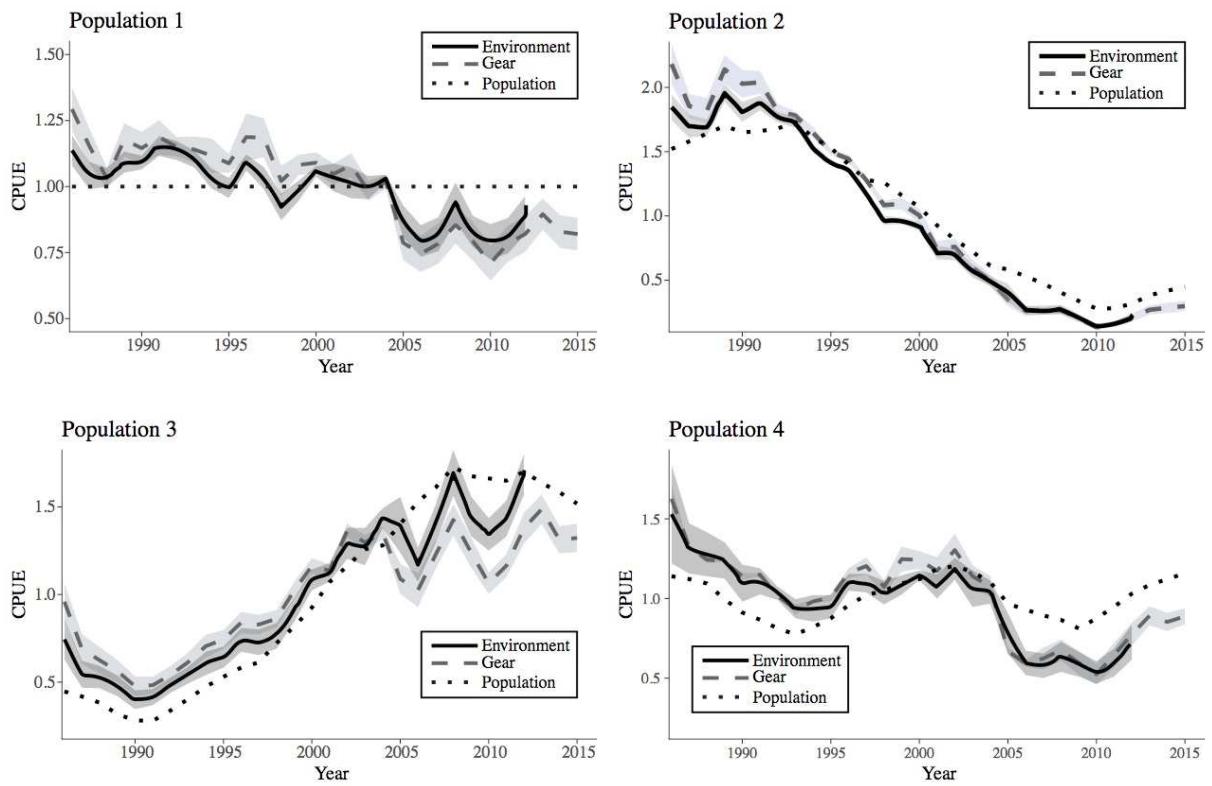


Figure 6.