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Abstract 22 
Environmental variability changes the distribution, migratory patterns, and susceptibility to 23 

various fishing gears for highly migratory marine fish. These changes become especially 24 

problematic when they affect the indices of abundance (such as those based on catch-per-unit-25 

effort: CPUE) used to assess the status of fish stocks. The use of simulated CPUE data sets with 26 

known values of underlying population trends has been recommended by ICCAT (International 27 

Commission for the Conservation of Atlantic Tunas) to test the robustness of CPUE 28 

standardization methods. A longline CPUE data simulator was developed to meet this objective 29 

and simulate fisheries data from a population with distinct habitat preferences. The simulation 30 

was used to test several statistical hypotheses regarding best practices for index standardization 31 

aimed at accurate estimation of population trends. Effort data from the US pelagic longline fleet 32 

was paired with a volume-weighted habitat suitability model for blue marlin (Makaira nigricans) 33 

to derive a simulated time series of blue marlin catch and effort from 1986-2015 with four 34 

different underlying population trends. The simulated CPUE data were provided to stock 35 

assessment scientists to determine if the underlying population abundance trend could accurately 36 

be detected with different methods of CPUE standardization that did or did not incorporate 37 

environmental data. While the analysts’ approach to the data and the modeling structure differed, 38 

the underlying population trends were captured, some more successfully than others. In general, 39 

the inclusion of environmental and habitat variables aided the standardization process. However, 40 

differences in approaches highlight the importance of how explanatory variables are categorized 41 

and the criteria for including those variables. A set of lessons learned from this study was 42 

developed as recommendations for best practices for CPUE standardization. 43 
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Indices of abundance derived from fishery-dependent time series of catch per unit effort 50 

(CPUE) are often an integral part of the stock assessment process. Thus, there is a need to 51 

understand the processes that might lead to biases in the indices. Nominal CPUE values are often 52 

not proportional to the abundance of the stock being assessed (Campbell, 2015, 2016; Maunder 53 

et al., 2006; Maunder and Punt, 2004). Variations in CPUE can be the result of changes in the 54 

abundance of the fish stock, shifts in movement patterns, environmental and climatic changes as 55 

well as changes in fishing strategy over time (Bigelow et al., 1999). Use of CPUE to track 56 

abundance is based on the assumption that catch (C) is related to the effort (E), the abundance 57 

(N) and the catchability (q): 58 

𝐶 = 𝑞𝐸𝑁 

The use of the CPUE (C/E) as an index of abundance (N) thus depends on the assumption 59 

that catchability is constant or that changes in catchability can be modeled and removed from the 60 

index. Changes in catchability can be related to any changes to the fishing gear, species targeting 61 

and fishing methods. Additionally, the spatial extent of the fish population or the fishery may 62 

shift over time, influencing the fraction of the stock that is available to each fleet. Habitat 63 

suitability, such as dissolved oxygen concentration and water temperatures in the pelagic 64 

environment, can affect fish availability or catchability (e.g., by altering fish behavior). 65 

Incorporation of environmental covariates into index standardization might address some of 66 

these issues, but this is not routinely done. Best practices for incorporating environmental 67 

variables in CPUE standardization have not been defined, which adds uncertainty in choosing 68 

standardization methods aimed at minimizing CPUE bias.  69 

A species distribution model (SDM) and longline simulator (LLSIM) were developed to test 70 

methods of CPUE standardization, amongst other goals. This paper uses simulated longline catch 71 

data sets with known values of underlying population trends to test the robustness of CPUE 72 

standardization methods. A species distribution model for Atlantic blue marlin (Makaira 73 

nigricans) was developed using pop-up satellite archival tag (PSAT) data paired with detailed 74 

data describing the physical environment within the model region (Fig. 1) to predict fish 75 

abundances using habitat suitability modeling (Goodyear et al., 2017; Goodyear, 2016). This 76 

approach is commonly used for predicting habitat quality from habitat suitability indices based 77 

on ecological niche theory (Hirzel and Lay, 2008). Applications to billfish species include the 78 

identification of potential new fishing grounds (Chang et. al., 2012, 2013), and forecasts of the 79 

effects of climate change (Robinson et al., 2015). This approach is paired with fishing fleet 80 

dynamics, using historical effort distribution and gear configurations of the US pelagic longline 81 

fishery.  Fleet catchability was defined to be gear-specific, while spatial effort allocation 82 

mimicked observed longline fishing locations. The simulated fleet was used to sample the blue 83 

marlin populating the SDM throughout the year, producing simulated catch per unit effort data 84 

based on the interactions between fishing effort and habitat suitability (i.e., fish availability) as 85 

well as gear configuration (gear efficiency) (Forrestal, et al., in press). The historical effort and 86 

gear configurations of the US longline fleet as adapted for use in the longline simulator are 87 

extensively discussed in Forrestal et al. (In press).  Four distinct population trends were 88 

simulated for blue marlin (steady, increasing, decreasing, and fluctuating) to produce simulated 89 

catch datasets. These datasets were provided to eight stock assessment scientists with expertise in 90 

standardizing CPUE indices who used methods of their choice to standardize the indices. The 91 

goals of this work are to determine how well different standardization methods currently in use 92 

capture population trends and if the inclusion of environmental and habitat data aids in the 93 

standardization process. 94 



 

 

2. Material and methods           95 
2.1 Species distribution model 96 

The simulated population model is defined in two steps. The first input is the population 97 

abundance in each year and month of the time series (here equal to September 1986 to December 98 

2015). The second input is the relative population density per one-degree latitude and longitude 99 

and water depth gradient defined by the SDM (Goodyear et al., 2017; Goodyear, 2016) based on 100 

the species habitat preferences for each model time-step. The densities were normalized so that 101 

the sum of the products of the relative density x volume over each latitude, longitude, and depth 102 

= 1.0.  The SDM provided the average distribution of the entire population by month and year 103 

during hours of daylight and nighttime to account for diel vertical redistribution. The method 104 

accounts for temporal changes in the location and volume of the habitat associated with seasonal 105 

and longer-term changes in the environment. For example, it directly estimates the vertical 106 

density distributions in areas affected by the oxygen minimum zones (Stramma et al., 2012). The 107 

SDM uses published blue  marlin oxygen tolerance information (Brill, 1994), coupled with 108 

temperature utilization and day-night ΔT patterns from PSAT-tagged blue marlin to predict the 109 

species distribution from the detailed environmental data (Goodyear et al., 2017; Goodyear, 110 

2016).  111 

Four population trends were used in this study, a constant population of 500,000 individuals, 112 

a decreasing population with a 70% reduction over 29 years, an increasing population by 70% 113 

over 29 years and a population that fluctuated around 500,000 individuals over the time period 114 

(Fig. 2-4). The declining pattern is roughly equivalent to the values estimated in the most recent 115 

assessment (Anon, 2012) and the increasing population is its mirror image. 116 

2.2 Environmental Data 117 

Modeling the spatial distribution of a species requires quantitative data about the physical 118 

environmental variables that determine its habitat. Temperature and to a lesser extent dissolved 119 

oxygen concentration influence blue marlin habitat use (Block et al., 1992). Environmental data 120 

were obtained though the Community Earth System Model (CESM1), which is a global ocean-121 

sea-ice model coupled to a biogeochemistry model BEC (Biogeochemical Elemental Cycle) 122 

(Danabasoglu et al., 2012; Long et al., 2013). The model covers the global ocean with a 123 

latitudinal and longitudinal resolution of 1.0° and 60 vertical layers with the bottom level at 124 

5,500 m. Annual data outputs from CESM were available through 2012. Mean values from the 125 

final year were used to parameterize the species distribution model for 2013-2015.  126 

2.3 Longline simulation model  127 

The core element of the longline simulator is the catch on a single hook of a longline set. 128 

The catch is a probabilistic event and is simulated for each hook of each set. The X-Y spatial 129 

structure of the simulator is from 35
0
S to 55

0
N latitude and 95

0
W to 20

0
E longitude, exclusive of 130 

major land masses. This area is broken down into 7,067 cells; each cell is 1 degree of latitude by 131 

1 degree of longitude. Each longitude-latitude cell is also divided into 46 depth strata of unequal 132 

size, corresponding to the environmental depth data. Conceptual details are presented in 133 

Goodyear et al. (2017) and Forrestal et al. (in press), but fundamentally involve the integration of 134 

population size, an essential gear coefficient (k) and a habitat coefficient (w) for each set. The 135 

habitat coefficient integrates the hook-depth probabilities at depth for each hook on a simulated 136 

set with the species relative density at the latitude and longitude of the set in each of the 46 depth 137 

layers apportioned by the proportion of the set that fishes at that depth in hours, separated 138 

between daylight and darkness. 139 



 

 

2.4 Data Analysis  140 

The longline simulator outputs a catch by set file with column headings typically observed in 141 

pelagic longline fishery logbook data. For this exercise, the variables included with the number 142 

of blue marlin caught were: total number of hooks, hook type, bait type, number of light sticks, 143 

hooks between floats (HBF), month, year and latitude and longitude (Table 1). Hook type had 144 

four levels: circle hooks, J hook, a combination of circle and J hooks and unknown hook type. 145 

Bait type used was artificial, live, dead or unknown. The light sticks were binned values 146 

corresponding to unknown light sticks reported, zero light sticks deployed, 1-500 and 501-1500 147 

light sticks. Hooks between floats numbered between 2 through 6. These variables are referred to 148 

as the gear variables and include those that are traditionally used for CPUE standardizations. The 149 

sea surface temperature (SST) and the dissolved oxygen (DO) at the surface for the location, 150 

month and year from 1986-2012 were also supplied from the outputs of the CESM and are 151 

referred to as the environmental variables. While the SST and DO were available from the model 152 

by depth, only the surface data were included to mimic the type of data available for CPUE 153 

standardization.  All simulated fishing sets were included in the final data set, including those 154 

that did not catch blue marlin. 155 

Four simulated catch datasets corresponding to the alternative population trends were 156 

distributed to eight analysts across several ICCAT contracting or cooperating countries (i.e., 157 

CPCs). These analysts have extensive knowledge and experience developing standardized 158 

indices of abundance from fisheries-dependant CPUE data. The work was carried out in a blind-159 

study approach, the analysts were not aware of the true population trends or the species being 160 

simulated in the dataset. The analysts developed their own approach to the data without 161 

consultation with the authors or the other analysts (Table 2). Some analysts provided more than 162 

one standardized index for each population due to their personal preference. The details of each 163 

analyst’s approach are summarized below. Analysts 1-3 did not have access to population 4 as 164 

this dataset was developed later in the study.  165 

2.4.1 Analyst 1 166 

Analyst 1 used a delta lognormal approach in R to standardize CPUE Factors were included 167 

if they explained at least 5% of the variance. Any two-way interactions that explained at least 5% 168 

of the variance were included as random effects, using the glmer function in the lme4 library for 169 

R (Bates et al., 2015). 170 

The CPUE of blue marlin was calculated as catch per thousand hooks. The potential 171 

explanatory variables were year (1986-2015), hooks between floats (either as a number, centered 172 

by subtracting the mean or as a factor), area (the 9 ICCAT areas for billfish; ICCAT, 2016, 173 

Online Supplementary Fig.1), season (months 1-3, 4-6, 7-9, 10-12), bait type (5 levels), hook 174 

type (4 levels) and light sticks (4 levels). Sea surface temperature and DO were not available for 175 

all years, so they were only used in alternate runs ending in 2012. Both variables were coded as 176 

factors (SST <15,15-20,20-25,25-30, DO <4.5,4.5-5, >5) (Table 3).  177 

The gear variables were not evenly distributed in time and there were many combinations of 178 

variables that did not exist. Therefore, some factors were combined or eliminated before running 179 

the models. Data from the South Atlantic (ICCAT billfish areas 96 and 97; Online 180 

Supplementary Fig. 1) was excluded since there were very few observations, with none in recent 181 

years. Hook types 2 and 5 and bait type 1 and 3 were excluded due to low numbers of 182 

observations. The final dataset included 96.5% of the total observations for all populations. The 183 

trend in CPUE was calculated as the probability of presence (calculated as the inverse logit of the 184 

year effect in the binomial model) times the mean CPUE when present (calculated by converting 185 



 

 

the year effect in the model from normal to lognormal). The Lo et al. (1992) method was used to 186 

calculate the standard errors.  187 

2.4.2 Analyst 2 188 

Analyst 2 used a negative binomial GLMM to standardize the catch in number, with effort 189 

taken to be an offset. The models were run consecutively in R using the MASS, nlme and lme4 190 

packages (Pinheiro et al., 2017; Venables and Ripley, 2002). Latitude and longitude were 191 

grouped into four areas (SE, NE, SW, NW) and months were grouped into quarters. This analyst 192 

used four models including a full model that contained year, area, quarter, hook type, bait type 193 

and light sticks. This model was repeated with the inclusion of sea surface temperature. This 194 

analyst did not use dissolved oxygen as it was highly negatively correlated to sea surface 195 

temperature. SST was treated at a continuous variable. The final two models contained year, area 196 

and quarter with and without SST. An offset term of the natural log of total hooks was used in 197 

the both the simple and full model. 198 

Interaction effects were not used for any of the models. Deviance explained was used as the 199 

main model selection criteria along with ANOVA and F tests (at the 0.05 level).  The year 200 

effects were estimated from the marginal mean in R given all other factors and variables.  201 

2.4.3 Analyst 3  202 

 Generalized linear models were run in R using the packages lsmeans and glmmADMB 203 

(Fournier et al., 2012). First, the annual CPUE observations were plotted as histograms to 204 

examine distribution shape and determine candidate models for estimating index variance. 205 

Goodness-of-fit tests (chi-squared for discrete distributions, and Kilmogorov-Smirnov for 206 

continuous distributions) were ran to evaluate the best-fit model to the observed data. The 207 

samples were assigned to spatial zones defined by the Southeast Fishery Science Center (Online 208 

Supplementary Fig. 2). From there, a delta gamma model was selected that included year, month, 209 

area, and all gear variables as factors.  Model performance was assessed by model convergence 210 

and residual error distribution. The model structure was the same for the model that contained 211 

environmental data. Sea surface temperature was treated as a continuous variable, and dissolved 212 

oxygen was not used as it was found to be correlated to sea surface temperature (Table 3). The 213 

binomial model and the gamma model used all the factors with single term fixed effects. No 214 

interaction terms were used, and no observations were discarded.  Temporal trends in samples 215 

sizes indicated an imbalance or temporal shift in the distribution for several factors, particularly 216 

gear, hook type, bait, hooks between floats, and area fished.  This diagnostic was used as a 217 

principle tool to select factors for inclusion in the standardization model.  The final model 218 

covariates were selected primarily by examining boxplots of the mean and variance of CPUE 219 

observations across model factors to examine which covariates appeared to influence CPUE and 220 

varied in sample distribution over time and secondarily, Akaike’s Information Criterion (AIC) of 221 

nested models.  222 

 223 

2.4.4 Analyst 4 224 

This analyst was the only one to utilize a Generalized Additive Model (GAM). SAS


 was 225 

used as the statistical oftware (Schlotzhauer and Littell, 1997). The GAM models were used in 226 

the delta lognormal framework to develop indices. The models applied to each population were 227 

the same and incorporated environmental variables. Smoothing splines were applied to SST, 228 

hooks, latitude, longitude, surface DO, light sticks and hooks between floats (HBF). Months, 229 

years, bait type and hook type were treated as categorical variables. The success component was 230 



 

 

modeled using a binomial distribution and the abundance component was modeled using a 231 

Poisson distribution.  232 

2.4.5 Analyst 5 233 

Analyst five used a delta lognormal approach implemented using Generalized Linear Mixed 234 

Models (GLMM). Analyses were conducted using the glimmix and mixed procedures from the 235 

SAS


 statistical computer software (Schlotzhauer and Littell,, 1997). This analyst employed an 236 

extensive graphical exploration of the datasets, including a spatio-temporal analysis to define 237 

geographical areas and seasonality of the fishery (Online Supplementary Fig. 3). The relationship 238 

between potential factors and the nominal ln(CPUE) of the positive sets were examined using 239 

proportional boxplots. Bivariate plots were used to examine the relationships between the 240 

ln(CPUE) and the environmental variables paired with smoothing fits. The selection of the final 241 

model was based on AIC, BIC, and a 
2
 test of the difference between the [–2 log likelihood] 242 

statistic of a successive model formulations (Littell et al., 1996). Interaction effects were used, 243 

and they were assumed to be random. The model structure was constant across all four 244 

populations (Table 3) and one standardized trend was obtained for each population that 245 

contained both the gear and environmental variables (Figs 2-4). Relative indices for the delta 246 

model formulation were calculated as the product of the year effect least square means 247 

(LSmeans) from the binomial and the lognormal model components. The LSmeans estimates use 248 

a weighted factor of the proportional observed margins in the input data to account for the non-249 

balance characteristics of the data. LSMeans of lognormal positive trips were bias corrected 250 

using Lo et al., (1992) algorithms. 251 

2.4.6 Analyst 6 252 

 Analyst 6 used a Tweedie Generalized Linear Model; analyses were conducted using R and 253 

the tweedie (Dunn and Smyth, 2005, 2008), lsmeans (Lenth, 2016) and mfp (Ambler and 254 

Benner, 2015) packages.  The Tweedie GLM approach does not split the response variables into 255 

success and abundance of CPUE and then apply two separate models as is the case with the delta 256 

approach used by other analysts (Table 4). The only response variable was CPUE measured as 257 

number of blue marlin caught per 1000 hooks, which is a continuous variable with an added 258 

mass of zeros for the cases of sets with zero catches. The categorical variables included in the 259 

final model were: year, month, light, hook type, bait type and hooks between floats. The spatial 260 

variables latitude and longitude were grouped into categorical areas using regression trees, 261 

according to the method developed by Ichinokawa and Brodziak (2010). The environmental 262 

variables sea surface temperature and dissolved oxygen were used as continuous variables 263 

transformed with fractional polynomials, using the method developed by Royston and Altman 264 

(1994). 265 

Initially, univariate models were applied for each candidate variable. Significance for 266 

inclusion were likelihood ratio tests comparing univariate models to the null model. All 267 

significant variables (5% level) were then used for a multivariate model. In the multivariate 268 

model, the final significance of each variable was analyzed using deviance tables, AIC and 269 

pseudo R
2
. The final models were slightly different for each population as the area 270 

categorizations and polynomial transformations were specific to each population dataset (Table 271 

4). No interaction effects were used due to computational restraints. The year effects were 272 

extracted in the same manner as analyst 3.  273 



 

 

2.4.7 Analyst 7 274 

This analyst used a delta lognormal GLMM approach to standardize the CPUE data. The 275 

statistical software employed was R with the glmer function of the lme4 package (Bates et al., 276 

2015).  None of the models included environmental variables due to computational constraints 277 

and the lack of environmental data in the most recent years. Latitude and longitude were grouped 278 

into three areas, a northern region (including the Gulf of Mexico), southern and Caribbean 279 

region. Successes were modeled using a binomial distribution, and abundances using a Gaussian 280 

distribution. Variables were included in the final model if they explained 5% or more of the 281 

deviance. The models used to standardize populations 2, 3 and 4 were the same while the model 282 

applied to population 1 contained interactions between year and some of the other explanatory 283 

variables (Table 3). If interactions with year were significant, they were treated as random 284 

effects. But in most cases, interactions could not be tested due to lack of computing power. The 285 

year effect was extracted by taking the year coefficients in both models and then transforming 286 

and corrected them according to Lo et al. 1992 287 

 288 

2.4.8 Analyst 8 289 

Analyst 8 used a delta lognormal GLM approach. The analyses were conducted using SAS 290 

proc glimmix for the binomial component and SAS proc mixed for the lognormal component.  291 

This analyst developed eight models, a different model for each population and models with and 292 

without the environmental variables (Table 3). Latitude and longitude were grouped into the US 293 

pelagic longline logbook areas (Cramer, 1983). The Goodman (1960) exact method for 294 

calculating the variance of two independent random variables was used to obtain the variance. 295 

Two methods commonly employed to select models were used; the method of Ortiz and Arocha 296 

(2004), which uses the percent reduction in explained deviance to select factors that explain 297 

greater than a certain percentage and the method of Brown (1992), which uses the percent 298 

deviance reduction per degree of freedom. A 5% cut-off was used for all models, which is 299 

commonly used for each method. Environmental variables were originally entered as categorical 300 

and were changed to continuous (SST*SST and surface DO) due to model fitting issues. The 301 

yearly index was extracted using the SAS lsmeans statement.  302 

2.4.9 Analysis of standardized trends 303 

Standardized trends from the eight analysts and the true population trends were 304 

normalized to the mean to examine differences among the time series. The normalized, modeled 305 

CPUE trends were regressed to the normalized, underlying population trends. Root mean square 306 

errors (RMSEs) were estimated using residuals between the population trend and the 307 

standardized CPUE to quantify the accuracy of each standardization. Further examination of 308 

model fits were estimated using the median absolute relative error (Ono et al., 2015, Online 309 

Supplementary Table 1). The average RMSE for all analysts within populations for models with 310 

and without environmental variables were compared with a t-test or Mann-Whitney U.  The 311 

mean standardized trends with and without environmental covariates were plotted using ggplot2 312 

and Hmisc packages (Wickham, 2009; Harrell, 2017).  313 

3. Results 314 
3.1 Population 1 315 

Population 1 led to the lowest average RMSE of the four populations examined for the model 316 

types that included only gear variables and those with environmental variables added (Table 5). 317 



 

 

The models that contained environmental variables had lower RMSE for all the analysts that 318 

examined both model types. However, there was no difference between the models that used the 319 

environmental models and those that did not (two-sample t (12) =1.49, p=0.16, Table 5). Two 320 

general patterns emerged from examining the standardized CPUEs in comparison to the 321 

population trends: (1) standardized CPUEs that fluctuated around the true population and (2) an 322 

overestimation of population size in the start of the time series and an underestimation beginning 323 

in 2002. The five models that underestimated the true values after 2002 did not include hook 324 

type in their final model. The exception to this trend was analyst 5 who did include hook type in 325 

the final model structure. This analyst was also the only one to use a GAM approach.  326 

The trends obtained by analysts 1, 2, 4, 7 and 8 exhibited a drop in population size in 2002 327 

that did not occur in the true population trend (Fig. 2). Analyst 1 noted that hook type was not 328 

used in the final model as it did not explain more than 5% of the deviance observed. Analyst 2 329 

used the environmental data in a model with only year, quarter and area (SE, NE, SW, NW) as 330 

factors and a full model with all possible variables (models environment 1 and 2 respectively, 331 

Fig. 2). The simpler model with environmental data had the drop observed in 2002. However, 332 

adding the environmental data smoothed the trend out even though hook type was not included. 333 

Both versions of the complete model (Gear 2 and Environment 2) had a very close agreement to 334 

the true population trend time series.  335 

Both time series obtained by analyst 3 fluctuated around the true population trend as did 336 

analyst 6’s time series. However, the error was lower for analyst 6. This pattern was also 337 

observed in three of analyst 2’s models although those standardized trends did not fluctuate 338 

around the true population. The RMSE for those three models were the lowest across all models 339 

and populations.  340 

Analyst 5’s standardized time series also fluctuated around the true population. However, 341 

starting in 2012, the standardized trend greatly overestimated the true population size. This 342 

analyst utilized SAS and incorporated the environmental variables into the final model. The 343 

environmental data points did not extend past 2012. Analysts that used these variables truncated 344 

the standardized CPUE at 2012 to account for the shorter time series. This was either discovered 345 

through an initial exploration of the data or, if R was used as the statistical software, the software 346 

automatically excluded records with data, in this case, environmental data. However, analyst 5 347 

used SAS which runs with years that contain missing data but uses the average value of the 348 

missing variable; this resulted in predictions for these years diverging from the true values. There 349 

are estimated values from the model including environmental effects in the 2013 and 2014, but 350 

they are highly uncertain. This occurred with all models across the four populations for analyst 5. 351 

For comparison purposes to other analysts, the model residuals used in the RMSE analysis were 352 

from 1986-2012.  353 

3.2 Population 2 354 

The population 2 dataset contained a declining population trend and all the analysts were able 355 

to capture the decline. In general, the standardized CPUE overestimated the true population size 356 

in the earliest years of the dataset. However, in the most recent years, the analysts either 357 

accurately estimated or underestimated the true population size. As was observed in population 358 

1, the models with the environmental variables had a non-significant lower average RMSE than 359 

those models that did not incorporate the environmental covariates (Mann-Whitney U=18.0, 360 

n1=6, n2=8, p=0.49, Table 5).  However, whether environmental variables reduced RSME varied 361 

by analyst. Models including the environmental variables had a higher RMSE for analysts 1 and 362 

3, but not for analysts 2 and 8 (Table 5).  363 



 

 

Analyst 1 treated hooks between floats as a factor for population 2 as the relationship 364 

between HBF and CPUE was not as clear for in population 1. Analyst 8’s binomial gear model 365 

only contained year and area.  366 

The time series obtained from analysts 1, 2, 4, 5 and 8 did not match the true population 367 

trend in the earliest years (1986-1993), which corresponded to the highest CPUE values (Fig. 3). 368 

In later years, the modeled trends converged on the true population trend for analysts 3, 6 and 7. 369 

Analysts 1, 2, 4, and 8 underestimated the true population size in the most recent years. The time 370 

series from analyst 5 followed the true population trend before the extreme values began in 2013.   371 

3.3 Population 3 372 

Population 3, which had an increasing population size, had the largest discrepancy between 373 

modeled values and the true population values as measured by the RMSE (Table 5). As with 374 

populations 1 and 2, the environmental models had a lower error than the gear models, but again 375 

the difference was not significant (two-sample t (12) =0.87, p=0.40, Table 5). 376 

The model produced by analysts 1, 2, 4 and 7 overestimated the population size in the earliest 377 

years and underestimated in the later years (Fig. 4). The environment models for analysts 3, 6 378 

and 8 all had very similar patterns, closely following the true population trends from 1986 to 379 

2002 and then exhibiting a spike of overestimation in 2008 and again in 2012. The gear models 380 

for analysts 1, 2, 7 and 8 underestimated the true population size starting in 2004; the inclusion 381 

of environmental variables corrected the underestimation in analyst 8’s model, but not for 382 

analysts 1 and 2. An examination of the mean standardized trends shows an overall 383 

overestimation of the earliest years population for both the gear and environmental models and 384 

an underestimation of both models beginning in 2004. However, the environmental models track 385 

closer to the true population trend (Fig. 6). 386 

3.4 Population 4 387 

There are results from five analysts for population 4 as opposed to eight for the other 388 

populations. This is the result of this dataset being distributed to the analysts later in the study. 389 

This dataset represents a fluctuating population with two occurrences of population decline and 390 

resurgence. For this population, the gear models had a lower mean RMSE than the environment 391 

models, although this was not significant (two-sample t (4) =-0.135, p=0.89, Table 5). 392 

Analyst 6 and 7 were able to track the true population’s fluctuations quite well (Fig. 5) while 393 

analysts 4 and 8 overestimated population size in the first year and then underestimated 394 

population size starting in 2005. Analyst 5 was able to capture the initial population trend quite 395 

well before a similar underestimation of the population starting in 2005. The two mean model 396 

trends were quite similar from 1986 until 1995, with the environmental model tracking closer to 397 

the true population trend from 1995 to 2005. After 2005, both models underestimated the true 398 

population with very similar observed patterns (Fig. 5). 399 

4. Discussion 400 
The aim of this study was to examine some of the methods employed by ICCAT CPC 401 

scientists who are routinely tasked with creating indices of abundance for the fisheries they 402 

participate in and to determine if these methods were able to reliably capture the underlying 403 

population trend in the provided datasets. The results of this work highlight the wide range of 404 

standardization approaches taken as a result of each ICCAT member country conducting their 405 

own analysis. The strengths of the ICCAT approach is that it is an inclusive process that subjects 406 

the analysis to review from other national scientists and allows those that are most 407 



 

 

knowledgeable about the fisheries to conduct the analyses. However, the weakness of this 408 

approach is the use of various methodologies can lead to conflicting CPUE trends that may or 409 

may not be reflective of the true biomass. Other tuna regional fishery management organization 410 

(tRFMO; e.g., WCPFC - Western and Central Pacific Fisheries Commission) differ from the 411 

approach of having each CPC scientist produce standardized CPUE trends and instead utilize the 412 

tRFMO Secretariat or the services of other advice bodies, such as SPC (Pacific Community). 413 

This leads to consistent standardization techniques applied over different datasets and over time. 414 

However, weaknesses of this approach are that it tends to exclude member countries’ scientists, 415 

and the analysts conducting the analysis may not have the same level of understanding of the 416 

fisheries as member country scientists. An effective compromise between these differing 417 

approaches may involve having the national scientists conduct their own analyses, but with 418 

generally consistent and agreed upon methods of standardization.  419 

While the analysts’ approach to the data and the modeling structure differed, most models 420 

were able to capture the underlying population trends well. However, differences in performance 421 

highlight the importance of how spatial dimensions are defined, how categorical variables are 422 

grouped, how continuous variables are modeled and, importantly, the criteria for model 423 

selection. The analysts used different area combinations for the spatial structure of their models, 424 

some grouping latitude and longitude according to the ICCAT areas for billfish, and others using 425 

the raw 1x1 latitude and longitude values. Analyst 6 utilized a regression tree approach, which 426 

led to different area groupings for each population.  Analyst 2 used the spatial domain of the 427 

observations to define four areas of equal quadrants based on the magnitude of effort.  The 428 

variables included in the final model also differed between analysts. Hook type was excluded 429 

from the models developed by several of the analysts.  Nominal catch rates for population 1 were 430 

higher, prior to the switch from J-hooks to circle hooks in 2004 and then were systematically 431 

lower than the true population CPUE. Models that failed to include hook type often failed to re-432 

create the true population trend. Analyst 8 conducted model selection independently for each 433 

population, noting that models did not converge when hook type was included.  434 

The addition of environmental variables improved the accuracy of estimates of the 435 

population size across all populations with a few exceptions, such as when SAS filled in missing 436 

data with mean environmental values for analyst 5. The inclusion of these variables in the cases 437 

of analyst 1 for population 2 and all the populations for analyst 3 resulted in a higher RMSE 438 

values and these models did not follow the true population values as well as the models that did 439 

not contain the environmental variables. Environmental variables are thought to be good 440 

predictors of density of a species in the vicinity of the set and/or hook. Environmental variables 441 

that determine suitability of adjacent habitat should improve estimation of CPUE by accounting 442 

for differential availability of a species in the vicinity of the set and/or hook. However, given the 443 

linear nature of GLM models, suitable transformation of the data (continuous explanatory 444 

variables) may be necessary, such as polynomials (e.g., SST*SST^2) to mimic species’ habitat 445 

preference curves. Also, the values of environmental variables at the surface may not be highly 446 

correlated with the values at depth that influence species’ distributions. Future studies should 447 

take advantage of the CESM data outputs at the actual depths where blue marlin and the hooks 448 

are located.  449 

While the use of environmental variables increased accuracy, their inclusion also increased 450 

the annual CVs compared to the models without the environmental variables (e.g. see CVs for 451 

analyst one, Online Supplementary Table 2), likely due to the added requirement of estimating a 452 

relatively imprecise relationship between catch rates and SST or DO. In theory, a strong 453 



 

 

relationship between a species density and environmentally-mediated habitat suitability may 454 

exist and is a fundamental part of the species distribution model (Goodyear et al., 2017). 455 

However, within the statistical models estimated in this exercise, this relationship is estimated 456 

from noisy CPUE data which may lead to relatively imprecise parameter estimates in the models 457 

and higher CVs as compared to not including SST or DO. Additionally, if there is insufficient 458 

contrast in the data to estimate the coefficients related to the environmental predictor variables, 459 

the estimates may be very imprecise, and possibly biased. This could be the case with fishery-460 

dependent data where fishers may only fish in good temperature windows so the necessary 461 

contrast to estimate a CPUE-SST relationship is missing. Further improvements in the concept of 462 

habitat modeling such as occupancy modeling or use of ancillary information from tagging or 463 

tracking in the form of Bayesian priors may provide improvements in both the accuracy and 464 

precision of CPUE-based abundance indices when including environmental data. 465 

The inclusion of the environmental variables caused a problem for the SAS-based analyses. 466 

Incomplete SST and DO values for the last two years caused the models of analyst 5 to diverge 467 

substantially from the true values. Most analysts did not, or their software packages could not, 468 

estimate the year effects for the years with the missing environmental variables. The SAS models 469 

converged, but estimates for the last two years were incorrect. This situation highlights the 470 

problem that missing data creates for CPUE standardization. Environmental data such as SST, 471 

DO, etc. are likely to be missing, due to either not being recorded, or, if assigned based on 472 

satellite oceanography, missing due to cloud cover. Hence missing data are commonplace and 473 

the model results can depend upon how the missing data are treated. It is therefore critical to 474 

examine a priori whether missing data exists and to decide how it is going to be treated rather 475 

than allowing software to use default settings. 476 

The poor performance of some models implies that standard model selection criteria such as 477 

those based on either a 1 or 5% reduction in deviance per degree of freedom can often fail to 478 

select key factors, in this case, hooks between floats or hook type, that affected catchability. 479 

Hook type had a substantial impact on CPUE in the true populations. Hook type in the fishery 480 

changed as a result of regulations from J-hooks to circle hooks in 2004. This shift in hook type 481 

resulted in a substantial decrease in the nominal CPUE relative to the true populations and was 482 

manifest in all of the four populations. Unfortunately, the knife-edge change in hook type meant 483 

that the years pre- and post-2004 and hook type did not overlap, causing hook type not to be 484 

selected using deviance explained. This result illustrates model selection methods based only on 485 

reduction in deviance may be prone to error regarding factor exclusion and that analysts should 486 

err on the side of keeping factors in the models. This is particularly the case if a priori 487 

exploratory analyses or knowledge of the fishery indicate that the variable could affect CPUE, 488 

which is surely the case with hook type or hooks between floats. Ortiz and Arocha (2004) found 489 

that variables that explained more than 5% of total deviance were generally significant according 490 

to likelihood ratio tests, which supports the use of 5% deviance explained in model selection. 491 

However, this selection method supports models with fewer variables than the AIC and BIC, 492 

which frequently include variables that are not significant in the best models. It should be noted 493 

that model selection criteria such as AIC and BIC supported including hook type. These methods 494 

of model selection have a better theoretical basis than ad hoc methods such as deviance 495 

explained, so more frequent use of them is warranted (Gelman et al., 2014). Our results indicate 496 

that these more complex models were better at predicting the overall trend, supporting the use of 497 

information criteria rather than deviance explained in CPUE standardization. While including 498 

many variables in a model may result in decreased model performance such as failed 499 



 

 

convergence, requiring selection of a subset of variables, most fishery-dependent CPUE 500 

standardization data sets have very high sample sizes relative to the number of model factors so 501 

over-parameterization is rarely a concern.   502 

Residual patterns emerging from the model fits to population 2 (the decreasing population) 503 

were a possible indication of high collinearity between the year effect and at least one other 504 

estimated parameter. Direct knowledge of the fishery and proper a priori examination of the raw 505 

data was critical in realizing the true population trend was correlated with hooks between floats 506 

in post hoc analysis. As the true population declined, the average depth of hooks increased. 507 

Strong collinearity between the year effect and other parameters can lead to confounding in 508 

parameter estimates and thus an inability of the model to distinguish between the correlated 509 

trends and thus produce an accurate estimate of the true population trend. However, this 510 

association could not have been detected without knowledge of the true population trend. Thus, 511 

collinearity between factors and the year effect needs to be inferred rather than detected by a 512 

means dependent on knowledge of the true population trend.  513 

Three analysts modeled the population with several year×factor interaction terms, which 514 

cause problems for interpretation of strict year effects (Maunder and Punt, 2004). Certain non-515 

year interactions, such as month×area or area×season could be manifestations of the migratory 516 

behavior of blue marlin. The month factor signifies something different in a northern region than 517 

in a southern region, which is straightforward to explain. In contrast, interactions with year are 518 

harder to explain, and represent a potential confounding of the abundance signal with another 519 

model factor, such as gear changes or environment.  520 

A common approach when year×factor interactions are significant is to model them as 521 

random effects as was done by several analysts. Unfortunately, modeling year×factor 522 

interactions as random effects can lead to several problems. First, random year×factor 523 

interactions can affect the parameter estimates for other variables. Second, it is important to plot 524 

year×factor parameter estimates and their standard errors to determine if they are actually 525 

random and not showing trends with respect to either year or the other variable in the interaction. 526 

Given the potential for serial depletion (Walters, 2003) or range shifts in populations due to 527 

climatic factors and the high probability of models finding spurious year×factor interactions, 528 

plots of the interaction terms provide critical information about patterns in these interactions. 529 

Truly random interactions would look random or would fail to reject a test of randomness. 530 

Significant interactions could exist as a single outlier year, which might not merit modeling or 531 

substantially trended interactions with year which require additional considerations as to why the 532 

population signal differs with different values of another factor. While several analysts used 533 

interaction terms, the interactions did not consistently improve the accuracy of the estimated 534 

trends. Future studies employing a factorial design to specifically compare different model types 535 

will further explore the use of interaction terms.  536 

Several of the results point to problems in current CPUE standardization approaches. The 537 

different performance of standardization methods, and the different performance with different 538 

methods for defining geographical areas raise some concerns about the ability of models to 539 

estimate population trends. Using an adaptive area partitioning method, Analyst 6 estimated 540 

different spatial partitioning for each population, even though each population had the same 541 

model factors operating and the same spatial structure. This indicates a possible dependence 542 

between the population trend and the estimation of the model parameters other than the year 543 

effect which is intended to capture the trend.  It may be possible to diagnose adverse correlation 544 

between year and other factors by examining variance inflation factors (VIFs) or by examining 545 



 

 

the covariance between ‘year’ and other model coefficients. High VIF or high covariance with 546 

year indicate that the model cannot separate the abundance trend from a trend in other model 547 

factors.  548 

5. Conclusions 549 
This study with simulated longline datasets sought to determine if standardization methods 550 

used by the ICCAT CPCs scientists can routinely capture underlying population trends from 551 

fishery-dependant CPUE data and to derive a set of ‘best practices’. Overall, despite the diversity 552 

of distributional assumptions, model selection methods, software and treatments of variables, 553 

most models were able to capture the underlying population trends. The inclusive stock 554 

assessment practice utilized by ICCAT allows the scientists most familiar with the specific, 555 

regional fleet to develop standardized CPUE time series that are then used as proxies for relative 556 

abundance trends in the stock assessment models. The downside to this practice is the wide 557 

variation in methodology, which may contribute to conflicting trends for the same species, and 558 

may be an artefact of standardization methodology rather than a true difference in signal between 559 

datasets. Thus, it is important that standardization methods be reviewed carefully before indices 560 

are used in assessment, and that multiple methods be applied to the same datasets to identify 561 

whether estimated trends differ with standardization methodology. 562 

This exercise highlights that there are several problems with some of the status quo 563 

approaches that warrant further exploration: unknown correlations between model factors and 564 

the year effect that can confound estimation of the population signal, the usefulness of standard 565 

model selection criterion to choose the correct models, and the dangers posed by missing data 566 

depending upon how a modeling platform deals with it.   567 

As a result of this work, we have developed a set of lessons learned: 568 

1) Priority of variable inclusion or exclusion should be based on a first principles knowledge 569 

of the fishery and the historical management measures that have taken place. If known 570 

changes in the fishery have occurred (e.g., changes in legal retained size, geographic 571 

distribution of fish and/fishery, changes in gear type) then these variables should be given 572 

the highest consideration for inclusion, whether or not model diagnostics support their 573 

inclusion. Alternatively, in cases where such variables cannot be accommodated in the 574 

statistical models due to technical issues, the CPUE series may have to be split and 575 

modeled as several independent time series to reflect those unaccounted changes in 576 

catchability. 577 

2) A priori evaluation of model balance across factor combinations over time and plots of 578 

CPUE time series by model factors are absolutely critical to determining which model 579 

factors are important or missing. This procedure would have captured the knife-edge 580 

switch in hook types in 2004 and the missing environmental data. 581 

3) Evaluation of multiple-collinearity of model variables with the year factor is essential. 582 

Strong collinearity with the year effect results in a GLM not being able to distinguish 583 

between inter-annual changes in abundance and those in the correlated variable.  584 

4) Embrace divergence of the nominal CPUE from the standardized model estimate. Often, 585 

the observation is made that the standardized trend diverges from the nominal as a 586 

shortcoming against the model selected. The lack of divergence between nominal and 587 

standardized trends is often used as a post hoc diagnostic of model performance. In the 588 

examples within this study, the only way to have obtained the correct estimate of the true 589 

population was to depart substantially from the nominal trend. 590 
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 693 

Figure captions  694 
 695 

Figure 1. Locations of simulated fishing sets for all years (1986-2015). 696 

Figure 2. Standardized trends for population 1 for all analysts. Environment lines signify that 697 

one or two environemntal terms were incldued in the final model. Gear models contain only 698 

variables are associated with gear type and that factors or variables that are tradtionally contained 699 

in CPUE standardization models. Population is the true population trend. 700 

Figure 3. As for Figure 2, except for population 2. 701 

Figure 4. As for Figure 2, except for population 3. 702 

Figure 5. As for Figure 2, except for population 4. Note results are only shown for five of the 703 

analysts. 704 

Figure 6. Mean standardized trends for all analysts. Shading surrounding lines is the 705 

standardized error around the mean.   706 
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Tables 708 

 709 
Table 1. Available variables to the analysts, if they were categorical or continous and the levels 710 

or range included. Latitude and longitude in one  cells, HBF=hooks between floats, SST (C) = 711 

sea surface temperature, DO (mg/L) = surface dissolved oxygen.  712 

Variable Type Range 

Year Categorical  1986-2015 

Month Categorical  1-12 

Lat. Continuous  -30S-53N 

Long. Continuous  -95W-15E 

HBF Categorical  2-6 

Hook Categorical  1-4 

Bait Categorical  1-4 

Lights Categorical  0-3 

SST Continuous  2-31 

DO Continuous  4-8 

 713 

Table 2. Model format for each analyst. The method used to select the variables within the final 714 

model structure are listed under “Criteria” (AIC=Akaike information criterion; BIC=Bayesian 715 

information criterion; LRT=Likelihood ratio test). The column “Environment” denotes if 716 

environmental variables were included in the final model, if “Both”, then the analyst conducted 717 

two standardizations, one with the environmental variable and one without.  718 

Analyst Model Program Criteria Environment 

One  Delta Lognormal GLMM R 5% deviance explained Both 

Two Negative Binomial GLM R 5% deviance explained Both 

Three  Delta Gamma GLM R AIC Both 

Four Delta Lognormal GAM SAS None Yes 

Five Delta Lognormal GLMM SAS AIC, BIC, 
2 

Yes 

Six Tweedie GLM R LRT, AIC, pseudo R
2 

Yes 

Seven Delta Lognormal GLM R 5% deviance explained No 

Eight Delta Lognormal GLM SAS 5% deviance explained/df  Yes 
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Table 3. Final model selection for analysts using the delta modeling approach. If analysts used the same final model for each 

population, only one model is listed for that analyst. Fixed effects are shown in plain text and random effects in bold. HBF is hooks 

between floats, DO is dissolved oxygen, and SST is sea surface temperature. See text for details on how each analyst defined each 

variable.  

Analy

st 

Populati

ons 
Presence Abundance 

One  All year+HBF+area+season+year×area+area×season year+HBF+area 

One  All year+HBF+area+season+SST year+HBF+area 

Three  All year+HBF+area+month+hook+bait+light year+HBF+area+month+hook+bait+light 

Three  All year+HBF+area+month+hook+bait+light+SST year+HBF+area+month+hook+bait+light+SST 

Four All 
SST+hooks+lat+lon+DO+light+HBF+month+year+

bait+hook 

SST+hooks+lat+lon+DO+light+HBF+month+year+bait+ 

hook 

Five All 

year+area+season+HBF+hook+light+bait+STT+DO

+year×area+ 

year×season+year×HBF+year×bait+year×light+se

ason×hook 

year+area+season+HBF+hook+light+bait+SST+DO+year×area+year×season+ye

ar×HBF+year×bait 

Seven 1 year+area+HBF+year×month+year×area year+month+area+year×month 

Seven 2-4 year+area+hook+HBF year+month+area 

Eight 1 year+month+bait+HBF+area year+light+hook+HBF+area 

Eight 1 year+month+bait+HBF+area+DO+SST
2
 year+light+hook+HBF+area 

Eight 2 year+area   year+light+hook+HBF+area  

Eight 2 year+month+bait+HBF+area+DO  year+month+area 

Eight 3 year+month+area year+light+hook+HBF+area 

Eight 3 year+month+light+hook+bait+area+DO+SST
2
  year+month+light+hook+bait+HBF+area+DO+SST

2
 

Eight 4 year+month+HBF+area+bait year+light+hook+HBF+area 

Eight 4 year+mont+light+hook+bait+HBF+area+DO+SST
2
 year+month+light+hook+bait+HBF+area+DO+SST

2
 

 



 

 

Table 4. Final model selection for analysts using negative binomial (Two) and Tweedie approaches (Six). All variables were fixed 

effects. See text for how each analyst defined each variable.  

Analyst Population Final Model 

Two (1) All year+quarter+area+offset(ln(hooks)) 

Two (1) All year+season+area+SST+offset(ln(hooks)) 

Two (2) All year+season+area+gear+light+HBF+hook+bait+offset(ln(hooks)) 

Two (2) All year+season+area+gear+light+HBF+hook+bait+SST+offset(ln(hooks)) 

Six 1 year+month+light+hook+bait+HBF+area+SST
3
+SST

3
*log(SST)+log(DO)+DO

0.5
 

Six 2 year+month+light+hook+bait+HBF+area+SST
3
+SST

3
*log(SST)+DO

3
+DO

3
*log(DO) 

Six 3 year+month+light+hook+bait+HBF+area+SST
3
+SST

3
*log(SST)+DO

3
+DO

3
*log(DO) 

Six 4 year+month+light+hook+bait+HBF+area+SST
3
+SST

3
*log(SST)+DO

-2
+DO

-2
*log(DO) 



 

 

Table 5. Root mean square errors for model fits to the true population trends.  

 
Population 1 Population 2 Population 3 Population 4 

 
Gear Enviro. Gear Enviro. Gear Enviro. Gear Enviro. 

Analyst 1 0.288 0.252 0.193 0.271 0.327 0.274     

Analyst 2 (1) 0.157 0.016 0.339 0.304 0.422 0.417     

Analyst 2 (2) 0.016 0.016 0.349 0.304 0.420 0.417     

Analyst 3 0.083 0.101 0.101 0.129 0.105 0.146     

Analyst 4   0.238   0.169 
 

0.272   0.229 

Analyst 5    0.284   0.204 
 

0.499   0.323 

Analyst 6   0.086   0.104 
 

0.122   0.102 

Analyst 7 0.235   0.110   0.333   0.195   

Analyst 8 0.277 0.255 0.345 0.132 0.281 0.121 0.266 0.461 

Mean 0.176 0.156 0.240 0.202 0.315 0.284 0.231 0.279 

SE 0.045 0.040 0.049 0.029 0.048 0.052 0.036 0.076 
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  

 

 

 

 

 




